已知函数其中
为自然对数的底数,
.(Ⅰ)设
,求函数
的最值;(Ⅱ)若对于任意的
,都有
成立,求
的取值范围.
【解析】第一问中,当时,
,
.结合表格和导数的知识判定单调性和极值,进而得到最值。
第二问中,∵,
,
∴原不等式等价于:,
即, 亦即
分离参数的思想求解参数的范围
解:(Ⅰ)当时,
,
.
当在
上变化时,
,
的变化情况如下表:
|
|
|
|
|
|
|
|
- |
|
+ |
|
|
|
|
|
|
1/e |
∴时,
,
.
(Ⅱ)∵,
,
∴原不等式等价于:,
即, 亦即
.
∴对于任意的,原不等式恒成立,等价于
对
恒成立,
∵对于任意的时,
(当且仅当
时取等号).
∴只需,即
,解之得
或
.
因此,的取值范围是
科目:高中数学 来源: 题型:
a2 | x |
查看答案和解析>>
科目:高中数学 来源: 题型:
lnx+k | ex |
查看答案和解析>>
科目:高中数学 来源: 题型:
若存在实常数和
,使得函数
和
对其定义域上的任意实数
分别满足:
和
,则称直线
为
和
的“隔离直线”.已知
,
(其中
为自然对数的底数),根据你的数学知识,推断
与
间的隔离直线方程为 .
查看答案和解析>>
科目:高中数学 来源:2012年全国普通高等学校招生统一考试理科数学(山东卷解析版) 题型:解答题
已知函数(
为常数,
是自然对数的底数),曲线
在点
处的切线与
轴平行.
(Ⅰ)求的值;
(Ⅱ)求的单调区间;
(Ⅲ)设,其中
为
的导函数.证明:对任意
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com