分析 (1)设他被这三个社团接受分别是事件A,B,C.可得P=P(AB$\overline{C}$)+P(A$\overline{B}$C)+P($\overline{A}$BC).
(2)此新生参加的社团数ξ可能取值为0,1,2,3,利用相互独立与互斥事件的概率计算公式可得分布列与数学期望.
解答 解:(1)设他被这三个社团接受分别是事件A,B,C.
则P=P(AB$\overline{C}$)+P(A$\overline{B}$C)+P($\overline{A}$BC)=$\frac{3}{4}$×$\frac{1}{2}$×$\frac{2}{3}$+$\frac{3}{4}$×$\frac{1}{2}$×$\frac{1}{3}$+$\frac{1}{4}$×$\frac{1}{2}$×$\frac{1}{3}$=$\frac{5}{12}$.
(2)此新生参加的社团数ξ可能取值为0,1,2,3,
P(ξ=0)=$\frac{1}{4}$×$\frac{1}{2}$×$\frac{2}{3}$=$\frac{1}{12}$,P(ξ=1)=$\frac{3}{4}$×$\frac{1}{2}$×$\frac{2}{3}$+$\frac{1}{4}$×$\frac{1}{2}$×$\frac{1}{3}$+$\frac{1}{4}$×$\frac{1}{2}$×$\frac{2}{3}$=$\frac{3}{8}$,P(ξ=2)=$\frac{5}{12}$,
P(ξ=3)=$\frac{3}{4}$×$\frac{1}{2}$×$\frac{1}{3}$=$\frac{1}{8}$.
故ξ分布列为
ξ | 0 | 1 | 2 | 3 |
P | $\frac{1}{12}$ | $\frac{3}{8}$ | $\frac{5}{12}$ | $\frac{1}{8}$ |
点评 本题考查了相互独立与互斥事件的概率计算公式、随机变量的分布列与数学期望计算公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [-2,4) | B. | (-1,3] | C. | [-2,-1] | D. | [-1,3] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | $\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{8}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com