精英家教网 > 高中数学 > 题目详情

【题目】已知x1是函数f(x)ax3x2(a1)x5的一个极值点.

(1)求函数f(x)的解析式;

(2)若曲线yf(x)与直线y2xm有三个交点求实数m的取值范围.

【答案】1f(x)的解析式为f(x)x3x22x5 2m的取值范围为

【解析】试题分析:(I)利用三次函数在极值点处的导数为零,即可解得a的值,进而确定函数的解析式;(II)将两曲线有三个交点问题,转化为函数g(x)=f(x)﹣(2x+m)有三个零点问题,利用导数研究函数g(x)的单调性和极值,找到问题的充要条件,列不等式即可解得m的范围

试题解析:

解:(1)依题意f′(x)=ax2-3xa+1,

f′(1)=0a=1,

函数f(x)的解析式为f(x)=x3x2+2x+5.

(2)曲线yf(x)与直线y=2xm有三个交点

x3x2+2x+5-2xm=0有三个实数根

g(x)=x3x2+2x+5-2xmx3x2+5-mg(x)有三个零点.

g′(x)=x2-3x=0x=0x=3.

g′(x)>0x<0x>3;令g′(x)<00<x<3.

函数g(x)(-∞,0)上为增函数(0,3)上为减函数(3,+∞)上为增函数.

函数在x=0处取得极大值x=3处取得极小值.

要使g(x)有三个零点只需 解得 <m<5.

实数m的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,边长为2的正方形ABCD的顶点A,D,分别在x轴,y轴正半轴上移动,则 的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A、B、C所对的边分别是a、b、c满足:cosAcosC+sinAsinC+cosB= ,且a,b,c成等比数列,
(1)求角B的大小;
(2)若 + = ,a=2,求三角形ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图所示的三棱柱中,棱底面 分别是 的中点.

(Ⅰ)求证:

(Ⅱ)求为二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若存在实数x1 , x2 , x3 , x4 满足f(x1)=f(x2)=f(x3)=f(x4),且x1<x2<x3<x4 , 则 的取值范围是(
A.(20,32)
B.(9,21)
C.(8,24)
D.(15,25)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=-x3x2(m21)x(xR)其中m>0.

(1)m1求曲线yf(x)在点(1f(1))处的切线斜率;

(2)求函数的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列判断正确的是(
A.a=7,b=14,A=30°,有两解
B.a=30,b=25,A=150°,有一解
C.a=6,b=9,A=45°,有两解
D.a=9,b=10,A=60°,无解

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时,求曲线在点处的切线方程;

(2)设,若对任意的,存在使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1= ,an= (n≥2,n∈N).
(1)试判断数列 是否为等比数列,并说明理由;
(2)设bn= ,求数列{bn}的前n项和Sn
(3)设cn=ansin ,数列{cn}的前n项和为Tn . 求证:对任意的n∈N* , Tn

查看答案和解析>>

同步练习册答案