精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,直线的参数方程为(其中为参数),以原点为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为

1)求曲线的焦点的极坐标;

2)若曲线的上焦点为,直线与曲线交于两点,,求直线的斜率.

【答案】1;(2

【解析】

1)用二倍角公式化简,将代入曲线方程,求出曲线的直角坐标方程,进而求出焦点坐标,再化为极坐标;

2)将直线方程与曲线方程联立,由根与系数关系结合直线参数的几何意义,求出关于的关系式,即可求解.

1)由

∴曲线是焦点在轴上的椭圆,焦点坐标为

则焦点的极坐标为

2)将直线的参数方程

(其中为参数,)代入

整理得:

异号,

,即直线的斜率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下表给出的是某城市年至年,人均存款(万元),人均消费(万元)的几组对照数据.

年份

人均存款(万元)

人均消费(万元)

1)试建立关于的线性回归方程;如果该城市年的人均存款为万元,请根据线性回归方程预测年该城市的人均消费;

2)计算,并说明线性回归方程的拟合效果.

附:回归方程中斜率和截距的最小二乘估计公式分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正四棱柱中,底面边长为,侧棱长为4分别为棱的中点,

1)求直线与平面所成角的大小;

2)求点到平面的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线的参数方程为为参数),以为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为

Ⅰ)求曲线的普通方程与曲线的直角坐标方程;

Ⅱ)设为曲线上的动点,求点上点的距离的最小值,并求此时点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,且直线与椭圆有且只有一个公共点.

1)求椭圆的标准方程;

2)设直线轴交于点,过点的直线与椭圆交于不同的两点,若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数.

1)讨论函数的单调性;

2)若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,椭圆的左右焦点分别为,椭圆右顶点为,点在圆.

1)求椭圆的标准方程;

2)点在椭圆上,且位于第四象限,点在圆上,且位于第一象限,已知,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当,证明

2)如果函数有两个极值点),且恒成立,求实数k的取值范围.

3)当时,求函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由国家统计局提供的数据可知,2012年至2018年中国居民人均可支配收入(单位:万元)的数据如下表:

年份

2012

2013

2014

2015

2016

2017

2018

年份代号

1

2

3

4

5

6

7

人均可支配收入

1.65

1.83

2.01

2.19

2.38

2.59

2.82

1)求关于的线性回归方程(系数精确到0.01);

2)利用(1)中的回归方程,分析2012年至2018年中国居民人均可支配收入的变化情况,并预测2019年中国居民人均可支配收入

附注:参考数据:

参考公式:回归直线方程的斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

同步练习册答案