精英家教网 > 高中数学 > 题目详情
14.将函数y=$\sqrt{3}$cosx+sinx(x∈R)的图象向左平移m(m>0)的长度单位后.所得到的图象关于原点对称,则m的最小值是$\frac{2π}{3}$.

分析 由条件利用两角和的正弦公式化简函数f(x)的解析式,再利用函数y=Asin(ωx+φ)的图象变换规律、正弦函数的图象的对称性,求得 m=kπ-$\frac{π}{3}$,k∈Z,可得m的最小值.

解答 解:函数y=$\sqrt{3}$cosx+sinx=2sin(x+$\frac{π}{3}$) 的图象向左平移m(m>0)的长度单位后,
得到y=2sin(x+m+$\frac{π}{3}$) 的图象.
再根据所得到的图象关于原点对称,可得m+$\frac{π}{3}$=kπ,即 m=kπ-$\frac{π}{3}$,k∈Z,
则m的最小值为$\frac{2π}{3}$,
故答案为:$\frac{2π}{3}$.

点评 本题主要考查两角和的正弦公式,函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设集合$A=\left\{{x\left|{{x^2}≤1}\right.}\right\},B=\left\{{x\left|{\frac{1}{x}≥0}\right.}\right\}$,则A∩B=(  )
A.(-∞,1]B.[0,1]C.(0,1]D.(-∞,0)∪(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点分别为F1,F2,P为椭圆上一点,且∠F1PF2=120°,则椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率的取值范围为[$\frac{\sqrt{3}}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A、B、C所对应的边分别是a、b、c.
(1)若sin(A+$\frac{π}{4}$)=$\sqrt{2}sinA$,求A的值;
(2)若cosA=$\frac{1}{2}$,sinB+sinC=2sinA,试判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.曲线f(x)=$\frac{x}{{x}^{2}+1}$在点(1,f(1))处的切线方程是(  )
A.x=1B.y=$\frac{1}{2}$C.x+y=1D.x-y=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{1}{3}$x3-ax2-3a2x+b(a,b∈R).
(Ⅰ)若曲线f(x)在点(1,f(1))处的切线方程为y=1,求a,b的值;
(Ⅱ)求f(x)的单调区间及极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在等腰梯形ABCD中,AB∥CD,AD=DC=a,∠ABC=60°,平面ACEF⊥平面ABCD,四边形ACEF是平行四边形,点M在线段EF上.
(1)求证:BC⊥平面ACEF;
(2)当FM为何值时,AM∥平面BDE?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)计算eln3+(0.01)${\;}^{-\frac{1}{2}}$+(1-$\sqrt{3}$)0
(2)若2lg(x-2y)=lgy+lg(5x-4y),求log2$\frac{x}{y}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若a=3a+1,b=ln2,c=log2sin$\frac{π}{12}$,则(  )
A.b>a>cB.a>b>cC.c>a>bD.b>c>a

查看答案和解析>>

同步练习册答案