【题目】某射击小组有甲、乙、丙三名射手,已知甲击中目标的概率是,甲、丙二人都没有击中目标的概率是,乙、丙二人都击中目标的概率是.甲乙丙是否击中目标相互独立.
(1)求乙、丙二人各自击中目标的概率;
(2)设乙、丙二人中击中目标的人数为X,求X的分布列和数学期望.
科目:高中数学 来源: 题型:
【题目】以直角坐标系的原点为极点,x轴的非负半轴为极轴,建立极坐标系,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为(t为参数),圆C的极坐标方程为
(1)求直线l和圆C的直角坐标方程;
(2)若点在圆C上,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的一个焦点与抛物线的焦点重合,且椭圆的离心率为.
(1)求椭圆的标准方程;
(2)直线交椭圆于、两点,线段的中点为,直线是线段的垂直平分线,求证:直线过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,如图甲,正方形的边长为4,,分别为,的中点,以为棱将正方形折成如图乙所示,且,点在线段上且不与点,重合,直线与由,,三点所确定的平面相交,交点为.
(1)若,试确定点的位置,并证明直线平面;
(2)若,求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四面体,,,,.
(1)若中点是,求证:面;
(2)若是线段上的动点,是面上的动点,且线段,的中点是,求动点的轨迹与四面体围成的较小的几何体的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】江苏省滨临黄海,每年夏秋季节常常受到台风的侵袭.据监测,台风生成于西北太平洋洋面上,其中心位于市南偏东方向的处,该台风先沿北偏西方向移动后在处登陆,登陆点在市南偏东方向处,之后,台风将以的速度沿北偏西方向继续移动.已知登陆时台风的侵袭范围(圆形区域)半径为,并以的速度不断增大.()
(1)求台风生成时中心与市的距离;
(2)台风登陆后多少小时开始侵袭市?(保留两位有效数字)
(参考数据:,,)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com