精英家教网 > 高中数学 > 题目详情
5.在平面直角坐标系,将曲线C1上的每一个点的横坐标保持不变,纵坐标缩短为原来的$\frac{1}{2}$,得到曲线C2,以坐标原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ=2.
(Ⅰ)求曲线C2的参数方程;
(Ⅱ)过原点O且关于y轴对称点两条直线l1与l2分别交曲线C2于A、C和B、D,且点A在第一象限,当四边形ABCD的周长最大时,求直线l1的普通方程.

分析 (Ⅰ)求出曲线C2的普通方程,即可求曲线C2的参数方程;
(Ⅱ)设四边形ABCD的周长为l,设点A(2cosα,sinα),则l=8cosα+4sinα=4$\sqrt{5}$sin(α+θ),cosθ=$\frac{1}{\sqrt{5}}$,sinθ=$\frac{2}{\sqrt{5}}$,由此,可求直线l1的普通方程.

解答 解:(Ⅰ)曲线C1的极坐标方程为ρ=2,直角坐标方程为x2+y2=4,将曲线C1上的每一个点的横坐标保持不变,纵坐标缩短为原来的$\frac{1}{2}$,得到曲线C2:$\frac{{x}^{2}}{4}$+y2=1,
∴曲线C2的参数方程为$\left\{\begin{array}{l}{x=2cosα}\\{y=sinα}\end{array}\right.$(α为参数);
(Ⅱ)设四边形ABCD的周长为l,设点A(2cosα,sinα),则l=8cosα+4sinα=4$\sqrt{5}$sin(α+θ),cosθ=$\frac{1}{\sqrt{5}}$,sinθ=$\frac{2}{\sqrt{5}}$,
α+θ=$\frac{π}{2}$+2kπ(k∈Z)时,l取得最大值,此时cosα=sinθ=$\frac{2}{\sqrt{5}}$,sinα=cosθ=$\frac{1}{\sqrt{5}}$,A($\frac{4}{\sqrt{5}}$,$\frac{1}{\sqrt{5}}$),
∴直线l1的普通方程为y=$\frac{1}{4}$x.

点评 本题考查求直线l1的普通方程,考查参数方程的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知α是第二象限角,且$|{cos\frac{α}{3}}|=-cos\frac{α}{3}$,则$\frac{α}{3}$是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=(x-2)ex,其中e是自然对数的底数.
(1)求函数f(x)的单调区间;
(2)当x∈[0,4]时,求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)已知$tanθ=-\frac{3}{4}$,求1+sinθcosθ-cos2θ的值;
(2)求值:$\frac{{cos{{40}^0}+sin{{50}^0}(1+\sqrt{3}tan{{10}^0})}}{{sin{{70}^0}\sqrt{1+sin{{50}^0}}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=(kx+4)lnx-x(x>1),若f(x)>0的解集为(s,t),且(s,t)中只有一个整数,则实数k的取值范围为($\frac{1}{ln3}$-$\frac{4}{3}$,$\frac{1}{2ln2}-1$)..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某几何体的三视图如图所示,则下列说法正确的是(  )
①该几何体的体积为$\frac{1}{6}$;
②该几何体为正三棱锥;
③该几何体的表面积为$\frac{3}{2}$+$\sqrt{3}$;
④该几何体外接球的表面积为3π
A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知F1,F2为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,以F1F2为直径的圆与双曲线右支的一个交点为P,PF1与双曲线相交于点Q,且|PQ|=2|QF1|,则该双曲线的离心率为 (  )
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.过点A(1,0)的直线l与椭圆$C:\frac{x^2}{3}+{y^2}=1$相交于E,F两点,自E,F分别向直线x=3作垂线,垂足分别为E1,F1
(Ⅰ)当直线l的斜率为1时,求线段EF的中点坐标;
(Ⅱ)记△AEE1,△AFF1的面积分别为S1,S2.设λ=S1S2,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知等比数列{an}的前n项和为Sn,若S3=7,S6=63,则数列{nan}的前n项和为(  )
A.-3+(n+1)×2nB.3+(n+1)×2nC.1+(n+1)×2nD.1+(n-1)×2n

查看答案和解析>>

同步练习册答案