【题目】如图,在多面体中,底面是边长为的菱形, ,四边形是矩形,平面平面, , 是的中点.
(1)求证: 平面;
(2)求直线与平面所成角的正弦值;
(3)求二面角的大小.
【答案】(1)见解析;(2);(3).
【解析】试题分析:(1)由平面 平面,及 ,得 平面(平面与平面垂直的性质);(2)建立适当的空间直角坐标系,求得平面的法向量的坐标及 ,可得 与平面所成角的夹角的正弦值;(3)由(2)的空间直角坐标,可求得 的法向量 ,平面 的法向量,得 ,由二面角为锐角,得所求二面角的值。
(1)证明:因为四边形是菱形,所以.
因为平面平面,且四边形是矩形,所以平面,
又因为平面,所以.
因为,所以平面.
(2)设,取的中点,连接,
因为四边形是矩形, 分别为, 的中点,所以,
又因为平面,所以平面,
由,得两两垂直,所以以为原点, 所在直线分别为轴, 轴, 轴,如图建立空间直角坐标系.
因为底面是边长为的菱形, , ,
所以.
因为平面,所以平面的法向量.
设直线与平面所成角为,由,得
,
所以直线与平面所成角的正弦值为.
(3)由(2)得, , ,
设平面的法向量为,
所以即
令,得,由平面,得平面的法向量为,
则,
由图可知二面角为锐角,
所以二面角的大小为.
科目:高中数学 来源: 题型:
【题目】如图所示,已知AB丄平面BCD,M、N分别是AC、AD的中点,BC 丄 CD.
(1)求证:MN//平面BCD;
(2)若AB=1,BC=,求直线AC与平面BCD所成的角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从参加高一年级期中考试的学生中抽出60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60)…,[80,90),[90,100],然后画出如图所示部分频率分布直方图.观察图形的信息,回答下列问题:
(1)求第四小组的频率,并补全这个频率分布直方图;
(2)估计这次考试的及格率(60分及60分以上为及格)和平均分;
(3)把从[80,90)分数段选取的最高分的两人组成B组,[90,100]分数段的学生组成C组,现从B,C两组中选两人参加科普知识竞赛,求这两个学生都来自C组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】余江人热情好客,凡逢喜事,一定要摆上酒宴,请亲朋好友、同事高邻来助兴庆贺.欢度佳节,迎亲嫁女,乔迁新居,学业有成,仕途风顺,添丁加口,朋友相聚,都要以酒示意,借酒表达内心的欢喜.而凡有酒宴,一定要划拳,划拳是余江酒文化的特色.余江人划拳注重礼节,形式多样;讲究规矩,蕴含着浓厚的传统文化和淳朴的民俗特色.在礼节上,讲究“尊老尚贤敬远客”一般是东道主自己或委托桌上一位酒量好的划拳高手来“做关”,——就是依次陪桌上会划拳的划一年数十二拳(也有半年数六拳).十二拳之后晚辈还要敬长辈一杯酒.
再一次家族宴上,小明先陪他的叔叔猜拳12下,最后他还要敬他叔叔一杯,规则如下:前两拳只有小明猜叔赢叔叔,叔叔才会喝下这杯敬酒,且小明也要陪喝,如果第一拳小明没猜到,则小明喝下第一杯酒,继续猜第二拳,没猜到继续喝第二杯,但第三拳不管谁赢双方同饮自己杯中酒,假设小明每拳赢叔叔的概率为,问在敬酒这环节小明喝酒三杯的概率是多少( )
(猜拳只是一种娱乐,喝酒千万不要过量!)
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知空间四边形, 分别在上,
(1) 若,异面直线与所成的角的大小为,求和所成的角的大小;
(2)当四边形是平面四边形时,试判断与三条直线的位置关系,并选择其中一种位置关系说明理由;
(3)已知当,异面直线所成角为,当四边形是平行四边形时,试判断点在什么位置时,四边形的面积最大,试求出最大面积并说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种产品的广告费支出 (百万元)与销售额 (百万元)之间有如下对应数据:
2 | 4 | 5 | 6 | 8 | |
30 | 40 | 50 | 60 | 70 |
如果与之间具有线性相关关系.
(1)作出这些数据的散点图;
(2)求这些数据的线性回归方程;
(3)预测当广告费支出为9百万元时的销售额。 ( 参考数据: )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,以原点为极点, 轴的正半轴为极轴,建立极坐标系.已知点的极坐标为,曲线的参数方程为 (为参数)
(1)求点的直角坐标;化曲线的参数方程为普通方程;
(2)设为曲线上一动点,以为对角线的矩形的一边垂直于极轴,求矩形周长的最小值,及此时点的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,多面体中, 两两垂直,平面平面,平面平面, .
(1)证明四边形是正方形;
(2)判断点是否四点共面,并说明为什么?
(3)连结,求证: 平面.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn=3n﹣1.
(1)求a1 , a2 , a3的值;
(2)求数列{an}的通项公式;
(3)求数列{nan}的前n项和Tn .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com