精英家教网 > 高中数学 > 题目详情

【题目】已知某校甲、乙、丙三个兴趣小组的学生人数分别为362424.现采用分层抽样的方法从中抽取7人,进行睡眠质量的调查.

1)应从甲、乙、丙三个兴趣小组的学生中分别抽取多少人?

2)若抽出的7人中有3人睡眠不足,4人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.表示抽取的3人中睡眠充足的学生人数,求随机变量的分布列与数学期望.

【答案】13人,2人,2.2)分布列见解析,

【解析】

1)根据各组人数和抽样比,即可求得各组抽取的人数.

2)根据独立重复试验中概率计算公式,可分别求得随机变量的概率,即可得其分布列.由数学期望公式,即可求得期望值.

1)由已知,甲、乙、丙三个兴趣小组的学生人数之比为,

由于采用分层抽样的方法从中抽取7,因此应从甲、乙、丙三个兴趣小组中分别抽取3,2,2.

2)随机变量的所有可能取值为0,1,2,3.

,

所以,随机变量的分布列为

0

1

2

3

随机变量的数学期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,点在线段上移动,有下列判断:①平面平面;②平面平面;③三棱锥的体积不变;④平面.其中,正确的是______.(把所有正确的判断的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市房管局为了了解该市市民月至月期间买二手房情况,首先随机抽样其中名购房者,并对其购房面积(单位:平方米,)进行了一次调查统计,制成了如图所示的频率分布直方图,接着调查了该市月至月期间当月在售二手房均价(单位:万元/平方米),制成了如图所示的散点图(图中月份代码分别对应月至月).

1)试估计该市市民的购房面积的中位数

2)现采用分层抽样的方法从购房面积位于位市民中随机抽取人,再从这人中随机抽取人,求这人的购房面积恰好有一人在的概率;

3)根据散点图选择两个模型进行拟合,经过数据处理得到两个回归方程,分别为,并得到一些统计量的值如下表所示:

0.000591

0.000164

0.006050

请利用相关指数判断哪个模型的拟合效果更好,并用拟合效果更好的模型预测出月份的二手房购房均价(精确到

(参考数据)

(参考公式)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,判断在定义域上的单调性;

2)若对定义域上的任意的,有恒成立,求实数a的取值范围;

3)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆的离心率为,直线被椭圆截得的线段长为.

(1)求椭圆的方程;

(2)过原点的直线与椭圆交于两点(不是椭圆的顶点),点在椭圆上,且,直线轴分别交于两点.

①设直线斜率分别为,证明存在常数使得,并求出的值;

②求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若曲线处的切线方程为,求实数的值;

2)若,且在区间上恒成立,求实数的取值范围;

3)若,且,讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆内一点,动圆经过点且与圆内切.

(1)求圆心的轨迹的方程.

(2)过点且不与坐标轴垂直的直线交曲线两点,线段的垂直平分线与轴交于点,求点横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,展现中国文化阴阳转化、对立统一的哲学理念.定义:图象能将圆的周长和面积同时等分成两部分的函数称为圆的一个太极函数,则下列命题正确的是___________.

1)函数可以同时是无数个圆的太极函数

2)函数可以是某个圆的太极函数

3)若函数是某个圆的太极函数,则函数的图象一定是中心对称图形;

4)对于任意一个圆,其太极函数有无数个.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“互倒函数”的定义如下:对于定义域内每一个,都有成立,若现在已知函数是定义域在的“互倒函数”,且当时,成立.若函数)都恰有两个不同的零点,则实数的取值范围是( )

A.B.C.D.

查看答案和解析>>

同步练习册答案