精英家教网 > 高中数学 > 题目详情
已知函数f(x)为R上的奇函数,且f(1)=-1,对任意a,b∈R,a+b≠0,有
f(a)+f(b)
a+b
<0

(1)判断函数f(x)在R上的单调性,并证明你的结论;
(2)解关于x的不等式f[
k(1-x)
x-2
]<1(0≤k<1)
分析:(1)确定函数f(x)在R上的单调递减,再利用函数单调性的定义进行证明;
(2)利用函数的单调性,将不等式化为具体不等式,再分类讨论,即可求得结论.
解答:解:(1)由函数f(x)为R上的奇函数,得f(0)=0,
又已知f(1)=-1,所以函数f(x)在R上的单调递减.
证明:令任意x1,x2∈R,x1<x2,在已知中,取a=x1,b=-x2,则
f(x1)+f(-x2)
x1-x2
<0

∵函数f(x)为R上的奇函数,∴f(-x2)=-f(x2),
又x1-x2<0,
∴f(x1)-f(x2)<0,即f(x1)<f(x2).
∴函数f(x)在R上的单调递减;
(2)∵1=-f(1)=f(-1)
∴由f[
k(1-x)
x-2
]<1
,得:f[
k(1-x)
x-2
]<f(-1)

∵函数f(x)在R上的单调递减
k(1-x)
x-2
>-1
,即:
(1-k)x+k-2
x-2
>0

∴当0<k<1时,不等式的解集为{x|x<2或x>
2-k
1-k
};
当k=0时,不等式的解集为{x|x≠2}.
点评:本题考查函数的单调性,考查解不等式,确定函数的单调性是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)为R上的连续函数且存在反函数f-1(x),若函数f(x)满足下表:
精英家教网
那么,不等式|f-1(x-1)|<2的解集是(  )
A、{x|
5
2
<x<4}
B、{x|
3
2
<x<3}
C、{x|1<x<2}
D、{x|1<x<5}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f (x)为R上的奇函数,且在(0,+∞)上为增函数,
(1)求证:函数f (x)在(-∞,0)上也是增函数;
(2)如果f (
12
)=1,解不等式-1<f (2x+1)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为R上的减函数,则满足f(|x|)<f(1)的实数x的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为R上的减函数,则满足f(x2-3x-3)<f(1)的实数x的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为R上的偶函数,当x>0时,f(x)=
1
x
,设a=f(
3
2
),b=f(log2
1
2
),c=f(
32
),则a,b,c的大小关系为
 

查看答案和解析>>

同步练习册答案