精英家教网 > 高中数学 > 题目详情

【题目】某市自来水公司每两个月(记为一个收费周期)对用户收一次水费,收费标准如下:当每户用水量不超过吨时,按每吨元收取;当该用户用水量超过吨时,超出部分按每吨元收取

(1)记某用户在一个收费周期的用水量为吨,所缴水费为元,写出关于的函数解析式.

(2)在某一个收费周期内,若甲、乙两用户所缴水费的和为元,且甲、乙两用户用水量之比为,试求出甲、乙两用户在该收费周期内各自的用水量和水费

【答案】(1);(2)见解析

【解析】试题分析:(1)第一问,主要是分类讨论得到一个关于x的分段函数. (2)第二问,先要分析出甲、乙两用户的用水量是否超过了30吨,确定后,得到一个方程,即可得到他们搁置的用水量和水费.

试题解析:

)由题意知,

)假设乙用户用水量为吨,则甲用户水量为吨,则甲乙所交水费所缴水费之和为

∴甲乙两用户用水量都超过吨.

设甲用水吨,乙用水吨,则有

解得:故:甲用水吨,水费为元;乙用水吨,水费为元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“奶茶妹妹”对某时间段的奶茶销售量及其价格进行调查,统计出售价x元和销售量y杯之间的一组数据如下表所示:

价格x

5

5.5

6.5

7

销售量y

12

10

6

4

通过分析,发现销售量y对奶茶的价格x具有线性相关关系.
(Ⅰ)求销售量y对奶茶的价格x的回归直线方程;
(Ⅱ)欲使销售量为13杯,则价格应定为多少?
注:在回归直线y= 中, = =146.5.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱与四棱锥的组合体中,已知平面,四边形是平行四边形, ,设是线段中点.

(1)求证: 平面

(2)证明:平面平面

(3)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某鲜奶店每天以每瓶3元的价格从牧场购进若干瓶鲜牛奶,然后以每瓶7元的价格出售.如果当天卖不完,剩下的鲜牛奶作垃圾处理.

(1)若鲜奶店一天购进30瓶鲜牛奶,求当天的利润(单位:元)关于当天需求量(单位:瓶,)的函数解析式;

(2)鲜奶店记录了100天鲜牛奶的日需求量(单位:瓶),绘制出如下的柱形图(例如:日需求量为25瓶时,频数为5);

(i)若该鲜奶店一天购进30瓶鲜牛奶,求这100天的日利润(单位:元)的平均数;

(ii) 若该鲜奶店一天购进30瓶鲜牛奶,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于100元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹进行一场比赛,则田忌马获胜的概率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点是菱形所在平面外一点, 是等边三角形, 的中点.

(Ⅰ)求证: 平面

(Ⅱ)求证:平面平面

(Ⅲ)求直线与平面的所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=的定义域为R.

(1)a的取值范围;

(2)若函数f(x)的最小值为,解关于x的不等式x2-x-a2-a<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数是奇函数.

(1)判断函数的奇偶性,并求实数的值;

(2)若对任意的,不等式恒成立,求实数的取值范围;

(3)设,若存在,使不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数,根据此数据作出了频数与频率的统计表和频率分布直方图.

分组

频数

频率

[10,15)

10

0.25

[15,20)

24

n

[20,25)

m

p

[25,30]

2

0.05

合计

M

1

(1)求出表中M,p及图中a的值;

(2)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;

(3)估计这次学生参加社区服务人数的众数、中位数以及平均数.

查看答案和解析>>

同步练习册答案