精英家教网 > 高中数学 > 题目详情
11.已知集合A={1,a,a-1},若-2∈A,则实数a的值为(  )
A.-2B.-1C.-1或-2D.-2或-3

分析 根据元素与集合的关系、集合的特点及对a分类讨论即可求出

解答 解:由实数-2∈A,
∴①若-2=a,则A={1.-2.-3},满足集合元素的互异性;
②若-2=a-1,则a=-1,此时A={1,-1,-2},满足集合元素的互异性;
综上可知:a=-2或-1.因此正确答案为C.
故选C.

点评 熟练掌握元素与集合的关系、集合的特点及分类讨论的思想方法是解题的关键

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知圆C经过点(1,-1),且圆心为C(2,0).
(Ⅰ)求圆C的标准方程;
(Ⅱ)求直线l:4x+3y-13=0被圆C截得的弦长;
(Ⅲ)过点P(0,-$\sqrt{2}$)作圆C的两条切线,切点分别是A,B,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,在棱长为a的正方体ABCD-A1B1C1D1中,点P为体对角线的中点.若△PAC的正视图的最高点与侧视图的每一个顶点相连所得的几何体的体积为V1,正方体外接球的体积为V2,则$\frac{{V}_{1}}{{V}_{2}}$的值为(  )
A.$\frac{1}{4π}$B.$\frac{\sqrt{3}}{4π}$C.$\frac{\sqrt{3}}{36π}$D.$\frac{\sqrt{6}}{36π}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某校在一次对是否喜欢英语学科的学生的抽样调查中,随机抽取了100名同学,相关的数据如表所示:
不喜欢英语喜欢英语总计
男生401858
女生152742
总计5545100
(Ⅰ)试运用独立性检验的思想方法分析:是否有99%的把握认为“学生是否喜欢英语与性别有关?”说明理由.
(Ⅱ)用分层抽样方法在喜欢英语学科的学生中随机抽取5名,女学生应该抽取几名?
(Ⅲ)在上述抽取的5名学生中任取2名,求恰有1名学生为男性的概率.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,
p(K2≥k)0.1000.0500.0250.010.001
k2.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=log2x的定义域是[2,8].
(1)设g(x)=f(2x)+f(x+2).求g(x)的解析式及定义域;
(2)求函数y=f2(x)+f(x2)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知a-b=1(0<b<1),则$\frac{{a}^{2}+2}{a}$+$\frac{{b}^{2}}{1-b}$的最小值为$\frac{3}{2}+\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x3+(1-a)x2-a(a+2)x+b(a,b∈R),
(1)若函数f(x)的图象过原点,且在原点处的切线的斜率为-3,求a,b的值;
(2)若曲线f(x)存在两条垂直于直线x=-1的切线,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.为提高在校学生的安全意识,防止安全事故的发生,学校拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是(  )
A.$\frac{1}{10}$B.$\frac{3}{25}$C.$\frac{1}{15}$D.$\frac{1}{30}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知双曲线x2-$\frac{y^2}{b^2}$=1(b>0)的焦距为4,则b=$\sqrt{3}$.

查看答案和解析>>

同步练习册答案