精英家教网 > 高中数学 > 题目详情
3.函数$f(x)=sin({2x+\frac{π}{3}})$的最小正周期为π; 单调递增区间为$[{-\frac{5π}{12}+kπ,\frac{π}{12}+kπ,}](k∈Z)$.

分析 利用周期公式可求最小正周期,由2k$π-\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,可解得函数的单调递增区间.

解答 解:∵$f(x)=sin({2x+\frac{π}{3}})$,
∴最小正周期T=$\frac{2π}{2}$=π.
∴由2k$π-\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,可解得函数的单调递增区间为:$[{-\frac{5π}{12}+kπ,\frac{π}{12}+kπ,}](k∈Z)$.
故答案为:π,$[{-\frac{5π}{12}+kπ,\frac{π}{12}+kπ,}](k∈Z)$.

点评 本题主要考查了三角函数的周期性及其解法,考查了正弦函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设△ABC的内角A,B,C所对的边分别为a,b,c,已知$\frac{a+b}{sin(A+B)}$=$\frac{a-c}{sinA-sinB}$.
(Ⅰ)求角B;
(Ⅱ)如果b=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在y=sin|x|,y=|sinx-$\frac{1}{2}$|,$y=sin(πx-\frac{1}{2})$,$y=tan(2x+\frac{π}{3})$四个函数中,周期为π的有(  )个.
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={x|y=ln(1-2x)},B={x|x2≤x},全集U=A∪B,则∁U(A∩B)=(  )
A.(-∞,0)B.(-$\frac{1}{2}$,1]C.(-∞,0)∪[$\frac{1}{2}$,1]D.(-$\frac{1}{2}$,0]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若集合A={x|-2≤x≤3},B={x|x<-1或x>4},则集合A∩B等于(  )
A.{x|-1<x≤3}B.{x|-2≤x<-1}C.{x|3≤x<4}D.{x|x≤3或x>4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.一个正四棱台的斜高是12cm,侧棱长是13cm,侧面积是720cm2.求它的上、下底面的边长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图所示,在直三棱拄ABC-A1B1C1中,AA1=AB=AC=1,AB⊥AC,N是BC的中点,点P在直线A1B1上,且满足$\overrightarrow{{A}_{1}P}$=λ$\overrightarrow{{A}_{1}{B}_{1}}$,当直线PN与平面ABC所的角最大时,λ的值是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,在直角梯形ABCD 中,已知AB=4,BC=5,AD=2,以顶点A 为圆心,AD 为半径剪去一个扇形,剩下的部分绕AB 旋转一周形成一个几何体,指出该几何体的结构特征,并求该几何体的体积V 和表面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知正实数x、y满足y>2x,则$\frac{{{y^2}-2xy+{x^2}}}{{xy-2{x^2}}}$最小值为4.

查看答案和解析>>

同步练习册答案