分析 利用周期公式可求最小正周期,由2k$π-\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,可解得函数的单调递增区间.
解答 解:∵$f(x)=sin({2x+\frac{π}{3}})$,
∴最小正周期T=$\frac{2π}{2}$=π.
∴由2k$π-\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,可解得函数的单调递增区间为:$[{-\frac{5π}{12}+kπ,\frac{π}{12}+kπ,}](k∈Z)$.
故答案为:π,$[{-\frac{5π}{12}+kπ,\frac{π}{12}+kπ,}](k∈Z)$.
点评 本题主要考查了三角函数的周期性及其解法,考查了正弦函数的单调性,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,0) | B. | (-$\frac{1}{2}$,1] | C. | (-∞,0)∪[$\frac{1}{2}$,1] | D. | (-$\frac{1}{2}$,0] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {x|-1<x≤3} | B. | {x|-2≤x<-1} | C. | {x|3≤x<4} | D. | {x|x≤3或x>4} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com