精英家教网 > 高中数学 > 题目详情
19.如果二次函数f(x)=x2-(a-1)x+5在区间($\frac{1}{4}$,$\frac{1}{2}$)上是减函数.那么f(2)的取值范围是(-∞,9]..

分析 求出函数f(x)=x2-(a-1)x+5的对称轴,得到关于a的不等式,即可解出a的取值范围,进而求出f(2)的范围.

解答 解:函数f(x)=x2-(a-1)x+5的对称轴x=$\frac{a-1}{2}$,
∵函数在区间($\frac{1}{4}$,$\frac{1}{2}$)上是减函数,
∴($\frac{1}{4}$,$\frac{1}{2}$)在对称轴的左侧,
∴$\frac{a-1}{2}$≥$\frac{1}{2}$,得a≥2.
∴f(2)=4-2(a-1)+5=13-2a,
由a≥2,得:-2a≤-4,
13-2a≤9,
故答案为:(-∞,9].

点评 考查二次函数图象的性质,二次项系数为正时,对称轴左边为减函数,右边为增函数,本题主要是训练二次函数的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=$\sqrt{{x}^{2}-6x+9}$+$\sqrt{{x}^{2}+6x+9}$-7,则该函数的单调递增区间是[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)是(-∞,0)∪(0,+∞)上的奇函数,当x>0时,f(x)=-$\frac{1}{x}$+1
(1)当x<0时,求函数f(x)的解析式;
(2)证明函数f(x)在区间(-∞,0)上是单调增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.正三棱锥高为1,底面边长为2$\sqrt{6}$,内有一球与四个面都相切.
(1)求棱锥的全面积;
(2)求球的半径及表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设a>0,b>0,且a+b=$\frac{1}{\sqrt{ab}}$.
(1)求a2+b2的最小值;
(2)是否存在a,b,使(a+b)(a+b+1)=2?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直线l与圆C:x2+y2+4x-2y+k=0的两交点A、B关于直线m:ax+y-3=0对称,且△ABC为面积等于2的直角三角形.
(1)求实数a的值.
(2)求直线1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=$\left\{\begin{array}{l}{-1,x为有理数}\\{1,x为无理数}\end{array}\right.$,若直线x=a是函数f(x)图象的对称轴,则(  )
A.a是整数B.a是无理数C.a是有理数D.a不存在

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.将“I LOVE YOU”8个英文字母填入5×4的方格中,其中“I“字母填入左上角,“U”字母填入右下角,将其余6个英文字母依次填入方格,要求只能横读或竖读成一句原话,如图所示为一种填法,则共有35种不同的填法.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等边△ABC的两个顶点分别为A(1,0,1),B(-1,0,1),且它的第三个顶点C在坐标轴上,求顶点C的坐标.

查看答案和解析>>

同步练习册答案