精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在四边形ABCD中,ACCDAB=1, ,sin∠BCD.

(1)求BC边的长;

(2)求四边形ABCD的面积.

【答案】(1) (2)

【解析】 试题分析:(1)先根据向量数量积求∠BAC,再根据余弦定理求BC边的长;(2)四边形ABCD的面积等于两个三角形面积之和,而△ABC为直角三角形,可得其面积;根据∠BCD=∠ACB+∠ACD=90°+∠ACD,所以先由sin∠BCD=求sin∠ACD,再根据三角形面积公式求SACD,最后相加得四边形ABCD的面积

试题解析:(1)∵ACCDAB=1,∴=2cos∠BAC=1.

∴cos∠BAC,∴∠BAC=60°.

在△ABC中,由余弦定理,有

BC2AB2AC2-2AB·AC·cos∠BAC=22+12-2×2×1×=3,∴BC .

(2)由(1)知,在△ABC中,有AB2BC2AC2.∴△ABC为直角三角形,且∠ACB=90°.

SABCBC·AC

又∠BCD=∠ACB+∠ACD=90°+∠ACD,sin∠BCD,∴cos∠ACD.

从而sin∠ACD.

SACDAC·CD·sin∠ACD×1×1×.

S四边形ABCDSABCSACD.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是以为中心的菱形, 底面上一点,且.

1)证明: 平面

2)若,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角三角形中,边a、b是方程x2﹣2 x+2=0的两根,角A、B满足:2sin(A+B)﹣ =0,求角C的度数,边c的长度及△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且满足Sn=2an﹣2.若数列{bn}满足bn=10﹣log2an , 则是数列{bn}的前n项和取最大值时n的值为(
A.8
B.10
C.8或9
D.9或10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了了解今年高中毕业生的体能状况,从某校高中毕业班中抽取一个班进行铅球测试,成绩在8.0(精确到0.1)以上的为合格.数据分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.040.100.140.280.30 .6小组的频数是7.

I)求这次铅球测试成绩合格的人数;

II)若参加测试的学生中9人成绩优秀,现要从成绩优秀的学生中,随机选出2人参加毕业运动会,已知学生的成绩均为优秀,求两人至少有1人入选的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的不等式2x2﹣8x﹣4﹣a>0在1<x<4内有解,则a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四边形ABCD中,AB⊥DA,CE= ,∠ADC= ;E为AD边上一点,DE=1,EA=2,∠BEC=

(1)求sin∠CED的值;
(2)求BE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某食品店为了了解气温对销售量的影响,随机记录了该店1月份中5天的日销售量(单位:千克)与该地当日最低气温(单位: )的数据,如下表:

x

2

5

8

9

11

y

12

10

8

8

7

(1)求出的回归方程

(2)判断之间是正相关还是负相关;若该地1月份某天的最低气温为,请用所求回归方程预测该店当日的销售量;

(3)设该地1月份的日最低气温,其中近似为样本平均数 近似为样本方差,求.

附:①回归方程中, .

,若,则 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“累积净化量”是空气净化器质量的一个重要衡量指标,它是指空气净化从开始使用到净化效率为50%时对颗粒物的累积净化量,以克表示,根据《空气净化器》国家标准,对空气净化器的累计净化量有如下等级划分:

累积净化量(克)

12以上

等级

为了了解一批空气净化器(共5000台)的质量,随机抽取台机器作为样本进行估计,已知这台机器的累积净化量都分布在区间中,按照均匀分组,其中累积净化量在的所有数据有:4.5,4.6,5.2,5.3,5.7和5.9,并绘制了频率分布直方图,如图所示:

(1)求的值及频率分布直方图中的值;

(2)以样本估计总体,试估计这批空气净化器(共5000台)中等级为的空气净化器有多少台?

(3)从累积净化量在的样本中随机抽取2台,求恰好有1台等级为的概率.

查看答案和解析>>

同步练习册答案