精英家教网 > 高中数学 > 题目详情

为了了解高一学生的体能状况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形的面积之比为2:4:17:15:9:3,第二小组频数为12.
(1)第二小组的频率是多少?
(2)样本容量是多少?
(3)若次数在110以上为达标,试估计全体高一学生的达标率为多少?

解:(1)∵从左到右各小长方形的面积之比为2:4:17:15:9:3,
第二小组频数为12.
∴样本容量是=150
∴第二小组的频率是=0.08
(2)样本容量是=150
(3)∵次数在110以上为达标,
次数在110以上的有150(1-)=132
∴全体高一学生的达标率为=0.88
分析:(1)根据从左到右各小长方形的面积之比为2:4:17:15:9:3,第二小组频数为12,用比值做出样本容量.
(2)第一问做出的样本容量可以把上面的过程写出来.
(3)根据上面做出的样本容量和前两个小长方形所占的比例,用所有的样本容量减去前两个的频数之和,得到结果,除以样本容量得到概率.
点评:本题考查频率分步直方图的应用,是一个基础题,这种题目解题的关键是看清图中所给的条件,知道小长方形的面积就是这组数据的频率.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

为了调查高中学生是否喜欢数学与性别的关系,某班采取分层抽样的方法从2011届高一学生中随机抽出20名学生进行调查,具体情况如下表所示.
喜欢数学 7 3
不喜欢数学 3 7
(Ⅰ)用独立性检验的方法分析有多大的把握认为本班学生是否喜欢数学与性别有关?
(参考公式和数据:
(1)k2=
n(ad-bc)2
(a+c)(b+d)(a+b)(c+d)

(2)①当k2≤2.706时,可认为两个变量是没有关联的;②当k2>2.706时,有90%的把握判定两个变量有关联;③当k2>3.841时,有95%的把握判定两个变量有关联;④当k2>6.635时,有99%的把握判定两个变量有关联.)
(Ⅱ)若按下面的方法从这个20个人中抽取1人来了解有关情况:将一个标有数字1,2,3,4,5,6的正六面体骰子连续投掷两次,记朝上的两个数字的乘积为被抽取人的序号,试求:
①抽到号码是6的倍数的概率;
②抽到“无效序号(序号大于20)”的概率.

查看答案和解析>>

科目:高中数学 来源:安徽省六安一中2012届高三第十次月考数学文科试题 题型:044

为了调查高中学生是否喜欢数学与性别的关系,某班采取分层抽样的方法从2011届高一学生中随机抽出20名学生进行调查,具体情况如下表所示.

(Ⅰ)用独立性检验的方法分析有多大的把握认为本班学生是否喜欢数学与性别有关?(参考公式和数据:(1)k2,(2)①当k2≤2.706时,可认为两个变量是没有关联的;②当k2>2.706时,有90%的把握判定两个变量有关联;③当k2>3.841时,有95%的把握判定两个变量有关联;④当k2>6.635时,有99%的把握判定两个变量有关联.)

(Ⅱ)若按下面的方法从这个20个人中抽取1人来了解有关情况:将一个标有数字1,2,3,4,5,6的正六面体骰子连续投掷两次,记朝上的两个数字的乘积为被抽取人的序号,试求:①抽到号码是6的倍数的概率;②抽到“无效序号(序号大于20)”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了调查高中学生是否喜欢数学与性别的关系,某班采取分层抽样的方法从2011届高一学生中随机抽出20名学生进行调查,具体情况如下表所示.
喜欢数学73
不喜欢数学37
(Ⅰ)用独立性检验的方法分析有多大的把握认为本班学生是否喜欢数学与性别有关?
(参考公式和数据:
(1)数学公式
(2)①当k2≤2.706时,可认为两个变量是没有关联的;②当k2>2.706时,有90%的把握判定两个变量有关联;③当k2>3.841时,有95%的把握判定两个变量有关联;④当k2>6.635时,有99%的把握判定两个变量有关联.)
(Ⅱ)若按下面的方法从这个20个人中抽取1人来了解有关情况:将一个标有数字1,2,3,4,5,6的正六面体骰子连续投掷两次,记朝上的两个数字的乘积为被抽取人的序号,试求:
①抽到号码是6的倍数的概率;
②抽到“无效序号(序号大于20)”的概率.

查看答案和解析>>

同步练习册答案