【题目】如图,在四边形ABCD中,AB//CD,∠ABD=30°,AB=2CD=2AD=2,DE⊥平面ABCD,EF//BD,且BD=2EF.
(Ⅰ)求证:平面ADE⊥平面BDEF;
(Ⅱ)若二面角CBFD的大小为60°,求CF与平面ABCD所成角的正弦值.
【答案】(1)见解析(2)
【解析】分析:(1)根据面面垂直的判定定理即可证明平面ADE⊥平面BDEF;
(2)建立空间直角坐标系,利用空间向量法即可求CF与平面ABCD所成角的正弦值;也可以应用常规法,作出线面角,放在三角形当中来求解.
详解:(Ⅰ)在△ABD中,∠ABD=30°,由AO2=AB2+BD2-2AB·BDcos30°,
解得BD=,所以AB2+BD2=AB2,根据勾股定理得∠ADB=90°∴AD⊥BD.
又因为DE⊥平面ABCD,AD平面ABCD,∴AD⊥DE.
又因为BDDE=D,所以AD⊥平面BDEF,又AD平面ABCD,
∴平面ADE⊥平面BDEF,
(Ⅱ)方法一:
如图,由已知可得,,则
,则三角形BCD为锐角为30°的等腰三角形.
则.
过点C做,交DB、AB于点G,H,则点G为点F在面ABCD上的投影.连接FG,则
,DE⊥平面ABCD,则平面.
过G做于点I,则BF平面,即角为
二面角CBFD的平面角,则60°.
则,,则.
在直角梯形BDEF中,G为BD中点,,,,
设 ,则,,则.
,则,即CF与平面ABCD所成角的正弦值为.
(Ⅱ)方法二:
可知DA、DB、DE两两垂直,以D为原点,建立如图所示的空间直角坐标系D-xyz.
设DE=h,则D(0,0,0),B(0,,0),C(-,-,h).
,.
设平面BCF的法向量为m=(x,y,z),
则所以取x=,所以m=(,-1
取平面BDEF的法向量为n=(1,0,0),
由,解得,则,
又,则,设CF与平面ABCD所成角为,
则sin=.
故直线CF与平面ABCD所成角的正弦值为
科目:高中数学 来源: 题型:
【题目】设两实数不相等且均不为.若函数在时,函数值的取值区间恰为,就称区间为的一个“倒域区间”.已知函数.
(1)求函数在内的“倒域区间”;
(2)若函数在定义域内所有“倒域区间”的图象作为函数的图象,是否存在实数,使得与恰好有2个公共点?若存在,求出的取值范围:若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.
(1)若a=-2,求B∩A,B∩(UA);(2)若A∪B=A,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据以往的成绩记录,甲、乙两名队员射击中靶环数(环数为整数)的频率分布情况如图所示.假设每名队员每次射击相互独立.
(Ⅰ)求图中a的值;
(Ⅱ)队员甲进行2次射击.用频率估计概率,求甲恰有1次中靶环数大于7的概率;
(Ⅲ)在队员甲、乙中,哪一名队员的射击成绩更稳定?(结论无需证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在底边为等边三角形的斜三棱柱ABC﹣A1B1C1中,AA1AB,四边形B1C1CB为矩形,过A1C作与直线BC1平行的平面A1CD交AB于点D.
(Ⅰ)证明:CD⊥AB;
(Ⅱ)若AA1与底面A1B1C1所成角为60°,求二面角B﹣A1C﹣C1的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】利用独立性检验的方法调查高中生的写作水平与离好阅读是否有关,随机询问120名高中生是否喜好阅读,利用2×2列联表,由计算可得K2=4.236
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参照附表,可得正确的结论是( )
A.有95%的把握认为“写作水平与喜好阅读有关”
B.有97.5%的把握认为“写作水平与喜好阅读有关”
C.有95%的把握认为“写作水平与喜好阅读无关”
D.有97.5%的把握认为“写作水平与喜好阅读无关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的部分图象如图所示:
(1)求的解析式;
(2)求的单调区间和对称中心坐标;
(3)将的图象向左平移个单位,再将横坐标伸长到原来的2倍,纵坐标不变,最后将图象向上平移1个单位,得到函数的图象,求函数在上的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 下列结论错误的是
A. 命题:“若,则”的逆否命题是“若,则”
B. “”是“”的充分不必要条件
C. 命题:“, ”的否定是“, ”
D. 若“”为假命题,则均为假命题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com