【题目】已知,设函数,.
(1)试讨论的单调性;
(2)设函数,是否存在实数,使得存在两个极值点,,且满足?若存在,求的取值范围;若不存在,请说明理由.
注:.
【答案】(1)答案不唯一,见解析;(2)存在,
【解析】
(1)求出函数的定义域以及,讨论的取值范围,即,,或,利用导数与函数单调性的关系即可求解.
(2)解法一:求出,根据题意可得有两解两解,从而可得,从而求得,由,令,可得,利用导数求出的单调性,且根据即可求解;解法二:根据函数有两个极值点可得,然后将不等式化为,由方程,得,令,,则,将不等式化为关于的不等式,利用导数即可证出.
解:(1)的定义域为
==,
(i)若,则,所以在递增,递减,
(ii)若,则在递增,递减,在递增,
(iii)若,则在递增;
(iv)若,则在递增,在递减,在递增.
(2)解法一: ,
, 若有两极值点,
则有两解两解,
.
且
所以.
令,则
若则,
,
令
,
,
所以在递增,在递减
又,
则在区间内存在使得.
函数y=m(x)在单调递增,在单调递减,
由,所以当时满足
,所以
即实数的取值范围为
解法二: ,
, 若有两极值点,
则有两解,
且,所以
即
由方程,得,
令,,则,
令,求导可得
.
令,得到,
所以在上单调递增,在单调递减.
又,,所以由,
即,解得. 故实数的取值范围是.
科目:高中数学 来源: 题型:
【题目】设各项均为正数的数列的前n项和为,已知,且,对一切都成立.
(1)当时,证明数列是常数列,并求数列的通项公式;
(2)是否存在实数,使数列是等差数列?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.
(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.
(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
频数 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;
(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.
(命题意图)本题主要考查给出样本频数分别表求样本的均值、将频率做概率求互斥事件的和概率,是简单题.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,是圆O的直径,点C是圆O上异于A,B的点,直线平面,E,F分别是,的中点.
(1)记平面与平面的交线为l,试判断直线l与平面的位置关系,并加以证明;
(2)设,求二面角大小的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系,.以坐标原点为极点,轴正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,点为上的动点,为的中点.
(1)请求出点轨迹的直角坐标方程;
(2)设点的极坐标为若直线经过点且与曲线交于点,弦的中点为,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为,为坐标原点,过点的直线与交于、两点.
(1)若直线与圆相切,求直线的方程;
(2)若直线与轴的交点为,且,,试探究:是否为定值.若为定值,求出该定值,若不为定值,试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆方程为.
(1)设椭圆的左右焦点分别为、,点在椭圆上运动,求的值;
(2)设直线和圆相切,和椭圆交于、两点,为原点,线段、分别和圆交于、两点,设、的面积分别为、,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com