精英家教网 > 高中数学 > 题目详情
已知函数处有极小值
(1)试求的值,并求出的单调区间.
(2)若关于的方程有3个不同实根,求实数a的取值范围.
根据函数在某点处有极值的概念,可以知道在处导数为零。并且求解得到a,b的值,然后利用导数的正负号来解不等式,得到单调增减区间。第二问中,方程根的问题,可以通过分离参数的思想,来得到常函数与已知曲线有3个不同的交点问题来处理。
解:(1)函数f(x)=x3-3ax2+2bx的导数为f′(x)=3x2-6ax+2b
∵函数f(x)=x3-3ax2+2bx在x=1处有极小值-1,∴f′(1)=0,f(1)=-1
即3-6a+2b=0,1-3a+2b=-1,解得a=1/3,b=-1/2
∴f(x)=x3-x2-x,f′(x)=3x2-2x-1
令f′(x)=0,即3x2-2x-1=0,解得,x=-1/3,或x=1
又∵当x>1时,f′(x)>0,当-1/3<x<1时,f′(x)<0,当x<-1/3时,f′(x)>0,
∴函数在x=-13时有极大值为f(-1/3)=5/27
函数在x=1时有极小值为f(1)=-1
(3)要的方程有3个不同实根,则需满足
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)讨论函数f (x)的极值情况;
(2)设g (x) =" ln(x" + 1),当x1>x2>0时,试比较f (x1 – x2)与g (x1 – x2)及g (x1) –g (x2)三者的大小;并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

观察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=(   )
A.f(x) B.-f(x)C.g(x)D.-g(x)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数在点(1,e)处的切线方程为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知, 则导数(   )
A.B.C.D.0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
(1)若的两个极值点为,且,求实数的值;
(2)是否存在实数,使得上的单调函数?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

曲线在点处切线的倾角的取值范围为,则P点到曲线对称轴距离的取值范围为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,
(1) 设(其中的导函数),求的最大值;
(2) 证明: 当时,求证:  ;
(3) 设,当时,不等式恒成立,求的最大值

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的导数是(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案