精英家教网 > 高中数学 > 题目详情
7.已知在R上可导的函数f(x)的图象如图所示,则不等式f(x)•f′(x)<0的解集为(  )
A.(-2,0)B.(-∞,-2)∪(-1,0)C.(-∞,-2)∪(0,+∞)D.(-2,-1)∪(0,+∞)

分析 函数y=f(x)(x∈R)的图象得函数的单调性,根据单调性与导数的关系得导数的符号,得不等式f(x)f′(x)<0的解集.

解答 解:由f(x)图象单调性可得f′(x)在(-∞,-1)∪(0,+∞)大于0,
在(-1,0)上小于0,
∴f(x)f′(x)<0的解集为(-∞,-2)∪(-1,0).
故选:B.

点评 考查识图能力,利用导数求函数的单调性是重点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=lnx-x2+x.
(1)求函数f(x)的单调区间;
(2)证明当a≥2时,关于x的不等式$f(x)<({\frac{a}{2}-1}){x^2}+ax-1$恒成立;
(3)若正实数x1,x2满足$f({x_1})+f({x_2})+2({x_1^2+x_2^2})+{x_1}{x_2}=0$,证明${x_1}+{x_2}≥\frac{{\sqrt{5}-1}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知幂函数f(x)=(m3-m+1)x${\;}^{\frac{1}{2}(1-8m-{m}^{2})}$(m∈Z)的图象与x轴,y轴都无交点,且关于y轴对称
(1)求f(x)的解析式;
(2)解不等式f(x+1)>f(x-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知全集U=R,A={x|-1≤x≤4},B={x|x<0或x>5},那么集合A∩(∁UB)=(  )
A.{x|-1≤x≤4}B.{x|0≤x≤4}C.{x|-1≤x≤5}D.{x|0≤x≤5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在复平面内,复数$\frac{i}{{\sqrt{3}-3i}}$对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设函数f(x)是R上的减函数,若f(m-1)>f(2m-1),则实数m的取值范围是(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知a∈R,命题$p:\frac{x^2}{2a}+\frac{y^2}{3a-6}=1$表示的曲线是焦点在x轴上的椭圆;命题q:不等式x2+(a+4)x+16>0的解集为R,若p∧q是真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知f(x)=$\left\{\begin{array}{l}|{{{log}_2}x}|,0<x≤2\\ \frac{1}{3}{x^2}-\frac{8}{3}x+5,x>2\end{array}$,若a,b,c,d互不相同,且f(a)=f(b)=f(c)=f(d),则a+b+c+d的取值范围为$({10,\frac{21}{2}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某单位委托一家网络调查公司对单位1000名员工进行了QQ运动数据调查,绘制了日均行走步数(千步)的频率分布直方图,如图所示(每个分组包括左端点,不包括右端点,如第一组表示运动量在[4,6)之间(单位:千步))
(Ⅰ)求单位职员日均行走步数在[6,8)的人数
(Ⅱ)根据频率分布直方图算出样本数据的中位数
(Ⅲ)记日均行走步数在[4,8)的为欠缺运动群体,[8,12)的为适度运动群体,[12,16)的为过量运动群体,从欠缺运动群体和过量运动群体中用分层抽样方法抽取5名员工,并在这5名员工中随机抽取2名与健康监测医生面谈,求过量运动群体中至少有1名员工与健康监测医生面谈的概率.

查看答案和解析>>

同步练习册答案