ÍÖÔ²CµÄÖÐÐÄΪ×ø±êÔ­µãO£¬µãA1£¬A2·Ö±ðÊÇÍÖÔ²µÄ×ó¡¢ÓÒ¶¥µã£¬BΪÍÖÔ²µÄÉ϶¥µã£¬Ò»¸ö½¹µãΪF£¨
3
£¬0£©£¬ÀëÐÄÂÊΪ
3
2
£®µãMÊÇÍÖÔ²CÉÏÔÚµÚÒ»ÏóÏÞÄÚµÄÒ»¸ö¶¯µã£¬Ö±ÏßA1MÓëyÖá½»ÓÚµãP£¬Ö±ÏßA2MÓëyÖá½»ÓÚµãQ£®
£¨I£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨II£©Èô°ÑÖ±ÏßMA1£¬MA2µÄбÂÊ·Ö±ð¼Ç×÷k1£¬k2£¬ÇóÖ¤£ºk1k2=-
1
4
£»
£¨III£© ÊÇ·ñ´æÔÚµãMʹ|PB|=
1
2
|BQ|£¬Èô´æÔÚ£¬Çó³öµãMµÄ×ø±ê£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
£¨I£©ÓÉÌâÒ⣬¿ÉÉèÍÖÔ²CµÄ·½³ÌΪ
x2
a2
+
y2
b2
=1
£¨a£¾b£¾0£©£¬Ôòc=
3
£¬
c
a
=
3
2
£¬
ËùÒÔa=2£¬b2=a2-c2=1£¬
ËùÒÔÍÖÔ²CµÄ·½³ÌΪ
x2
4
+y2
=1£®
£¨II£©Ö¤Ã÷£ºÓÉÍÖÔ²CµÄ·½³Ì¿ÉÖª£¬µãA1µÄ×ø±êΪ£¨-2£¬0£©£¬µãA2µÄ×ø±êΪ£¨2£¬0£©£¬
É趯µãMµÄ×ø±êΪ£¨x0£¬y0£©£¬ÓÉÌâÒâ¿ÉÖª0£¼x0£¼2£¬y0£¾0£¬
Ö±ÏßMA1µÄбÂÊk1=
y0
x0+2
£¾0£¬Ö±ÏßMA2µÄбÂÊk2=
y0
x0-2
£¼0£¬
ËùÒÔk1k2=
y02
x02-4
£¬
ÒòΪµãM£¨x0£¬y0£©ÔÚÍÖÔ²
x2
4
+y2
=1ÉÏ£¬
ËùÒÔ
x02
4
+y02=1
£¬¼´y02=1-
x02
4
£¬
ËùÒÔk1k2=
1-
x02
4
x02-4
=-
1
4
£»
£¨III£©ÉèÖ±ÏßMA1µÄ·½³ÌΪy=k1£¨x+2£©£¬Áîx=0£¬µÃy=2k1£¬ËùÒÔµãPµÄ×ø±êΪ£¨0£¬2k1£©£¬
ÉèÖ±ÏßMA2µÄ·½³ÌΪy=k2£¨x-2£©£¬Áîx=0£¬µÃy=-2k2£¬ËùÒÔµãQµÄ×ø±êΪ£¨0£¬-2k2£©£¬
ÓÉÍÖÔ²·½³Ì¿ÉÖª£¬µãBµÄ×ø±êΪ£¨0£¬1£©£¬
ÓÉ|PB|=
1
2
|BQ|£¬µÃ|1-2k1|=
1
2
|-2k2-1|
£¬
ÓÉÌâÒ⣬¿ÉµÃ1-2k1=
1
2
£¨-2k2-1£©£¬
ÕûÀíµÃ4k1-2k2=3£¬Óëk1k2=-
1
4
ÁªÁ¢£¬Ïûk1¿ÉµÃ2k22+3k2+1=0£¬
½âµÃk2=-1»òk2=-
1
2
£¬
ËùÒÔÖ±ÏßMA2µÄÖ±Ïß·½³ÌΪy=-£¨x-2£©»òy=-
1
2
£¨x-2£©£¬
ÒòΪy=-
1
2
£¨x-2£©ÓëÍÖÔ²½»ÓÚÉ϶¥µã£¬²»·ûºÏÌâÒ⣮
°Ñy=-£¨x-2£©´úÈëÍÖÔ²·½³Ì£¬µÃ5x2-16x+12=0£¬
½âµÃx=
6
5
»ò2£¬
ÒòΪ0£¼x0£¼2£¬ËùÒÔµãMµÄ×ø±êΪ£¨
6
5
£¬
4
5
£©£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²CµÄÖÐÐÄΪ×ø±êÔ­µãO£¬Ò»¸ö³¤Öá¶ËµãΪ£¨0£¬1£©£¬¶ÌÖá¶ËµãºÍ½¹µãËù×é³ÉµÄËıßÐÎΪÕý·½ÐΣ¬ÈôÖ±ÏßlÓëyÖá½»ÓÚµãP£¨0£¬m£©£¬ÓëÍÖÔ²C½»ÓÚ²»Í¬µÄÁ½µãA¡¢B£¬ÇÒ
AP
=3
PB
£®
£¨¢ñ£©ÇóÍÖÔ²CµÄÀëÐÄÂʼ°Æä±ê×¼·½³Ì£»
£¨¢ò£©ÇóʵÊýmµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÍÖÔ²CµÄÖÐÐÄΪ×ø±êÔ­µãO£¬½¹µãÔÚyÖáÉÏ£¬ÀëÐÄÂÊe=
2
2
£¬ÍÖÔ²Éϵĵ㵽½¹µãµÄ×î¶Ì¾àÀëΪ1-
2
2
£¬Ö±ÏßlÓëyÖá½»ÓÚµãP£¨0£¬m£©£¬ÓëÍÖÔ²C½»ÓÚÏàÒìÁ½µãA¡¢B£¬ÇÒ
AP
=¦Ë
PB
£®
£¨1£©ÇóÍÖÔ²·½³Ì£»
£¨2£©Èô
OA
+¦Ë
OB
=4
OP
£¬ÇómµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÍÖÔ²CµÄÖÐÐÄΪ×ø±êÔ­µãO£¬½¹µãÔÚyÖáÉÏ£¬¶ÌÖ᳤Ϊ
2
¡¢ÀëÐÄÂÊΪ
2
2
£¬Ö±ÏßlÓëyÖá½»ÓÚµãP£¨0£¬m£©£¬ÓëÍÖÔ²C½»ÓÚÏàÒìÁ½µãA¡¢B£¬ÇÒ
AP
=3
PB
£®
£¨I£©ÇóÍÖÔ²·½³Ì£»
£¨II£©ÇómµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÍÖÔ²CµÄÖÐÐÄΪ×ø±êÔ­µãO£¬½¹µãÔÚyÖáÉÏ£¬ÀëÐÄÂÊe=
2
2
£¬ÍÖÔ²Éϵĵ㵽½¹µãµÄ×î¶Ì¾àÀëΪ1-e£¬Ö±ÏßlÓëyÖá½»ÓÚµãP£¨0£¬m£©£¬ÓëÍÖÔ²C½»ÓÚÏàÒìÁ½µãA¡¢B£¬ÇÒ
AP
=¦Ë
PB
£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©Èô
OA
+¦Ë
OB
=4
OP
£¬ÇómµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²CµÄÖÐÐÄΪ×ø±êÔ­µãO£¬Ò»¸ö³¤Öá¶ËµãΪ£¨0£¬2£©£¬¶ÌÖá¶ËµãºÍ½¹µãËù×é³ÉµÄËıßÐÎΪÕý·½ÐΣ¬Ö±ÏßlÓëyÖá½»ÓÚµãP£¨0£¬m£©£¬ÓëÍÖÔ²C½»ÓÚÏàÒìÁ½µãA¡¢B£¬ÇÒ
AP
=2
PB
£®
£¨¢ñ£©ÇóÍÖÔ²·½³Ì£»
£¨¢ò£©ÇómµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸