精英家教网 > 高中数学 > 题目详情

【题目】设已知抛物线C:y2=2px的焦点为F1 , 过F1的直线l与曲线C相交于M,N两点.
(1)若直线l的倾斜角为60°,且|MN|= ,求p;
(2)若p=2,椭圆 +y2=1上两个点P,Q,满足:P,Q,F1三点共线且PQ⊥MN,求四边形PMQN的面积的最小值.

【答案】
(1)解:直线l的方程为y= (x﹣ ),代入抛物线方程,整理可得 =0,

∴xN+xM=

∵|MN|=

+p= ,∴p=2;


(2)解:当直线MN斜率不存在时,直线PQ斜率为0,此时|MN|=4,|PQ|=2 ,SPMQN=4

当直线MN斜率存在时,设方程为y=k(x﹣1)(k≠0),代入抛物线可得k2x2﹣(2k2+4)x+k2=0,

∴xM+xN= +2,

∴|MN|= +4

由PQ⊥MN,可设PQ的方程y=﹣ (x﹣1),代入椭圆方程得(k2+2)x2﹣4x+2﹣2k2=0,

∴xP+xQ= ,xPxQ=

∴PQ|= =

∴S=

令t=1+k2(t>1),S= =4 (1+ )>4

∴四边形PMQN的面积的最小值为4


【解析】(1)直线l的方程为y= (x﹣ ),代入抛物线方程,利用弦长公式,求p;(2)分类讨论,求出弦长,表示面积,即可得出结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《孙子算经》是我国古代的数学著作,其卷下中有类似如下的问题:“今有方物一束,外周一匝有四十枚,问积几何?”如右图是解决该问 题的程序框图,若设每层外周枚数为a,则输出的结果为(

A.81
B.74
C.121
D.169

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某重点中学为了解高一年级学生身体发育情况,对全校700名高一年级学生按性别进行分层抽样检查,测得身高(单位:cm)频数分布表如表1、表2. 表1:男生身高频数分布表

身高(cm)

[160,165)

[165,170)

[170,175)

[175,180)

[180,185)

[185,190)

频数

2

5

14

13

4

2

表2:女生身高频数分布表

身高(cm)

[150,155)

[155,160)

[160,165)

[165,170)

[170,175)

[175,180)

频数

1

7

12

6

3

1


(1)求该校高一女生的人数;
(2)估计该校学生身高在[165,180)的概率;
(3)以样本频率为概率,现从高一年级的男生和女生中分别选出1人,设X表示身高在[165,180)学生的人数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A、B、C的对边分别为a、b、c,已知△ABC的面积为accosB,BC的中点为D. (Ⅰ) 求cosB的值;
(Ⅱ) 若c=2,asinA=5csinC,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个几何体的三视图如图所示,则这个几何体的表面积为(
A.24+8 +8
B.20+8 +4 ??
C.20+8 +4
D.20+4 +4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题的叙述:
①若p:x>0,x2﹣x+1>0,则¬p:x0≤0,x02﹣x0+1≤0;
②三角形三边的比是3:5:7,则最大内角为 π;
③若 = ,则 =
④ac2<bc2是a<b的充分不必要条件,
其中真命题的个数为(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= 是奇函数.
(1)求f(x)的单调区间;
(2)关于x的不等式2m﹣1>f(x)有解,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在公差不为零的等差数列{an}中,已知a2=3,且a1、a3、a7成等比数列.
(1)求数列{an}的通项公式;
(2)设数列{an}的前n项和为Sn , 记bn= ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线 ,θ∈[0,2π)上一点P(x,y)到定点M(a,0),(a>0)的最小距离为 ,则a=

查看答案和解析>>

同步练习册答案