精英家教网 > 高中数学 > 题目详情
已知直线x-2y+2k=0与两坐标轴所围成的三角形的面积不大于1,则实数k的取值范围是
-1≤k≤1且k≠0.
-1≤k≤1且k≠0.
分析:先求出直线在两坐标轴上的截距,把三角形的面积表示出来,再根据其面积不大于1,建立关于k的不等式求解,注意去掉k=0时的情况.
解答:解:令x=0,得y=k;令y=0,得x=-2k.
∴三角形面积S=|
1
2
xy|=k2
又S≤1,即k2≤1,
∴-1≤k≤1.
又当k=0时,直线过原点构不成三角形,故应舍去,
故答案为:-1≤k≤1且k≠0.
点评:本题考查直线的一般式方程,在求解时易忘记验证k=0时是一个须舍去的点,故本题是一个易错题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线x+2y=2分别与x轴、y轴相交于A,B两点,若动点P(a,b)在线段AB上,则ab的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线x-2y+2=0经过椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左顶点A和上顶点D,椭圆C的右顶点为B,点S是椭圆C上位于x轴上方的动点,直线AB,BS与直线l:x=
10
3
分别交于M,N两点.
(1)求椭圆C的方程;
(2)求线段MN的长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知直线x-2y+2=0经过椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左顶点A和上顶点D,椭圆C的右顶点为B,点S是椭圆C上位于x轴上方的动点,直线AS,BS与直线l:x=
10
3
分别交于M,N两点.
(1)求椭圆C的方程;
(2)求线段MN的长度的最小值;
(3)当线段MN的长度最小时,在椭圆C上是否存在这样的点T,使得△TSB的面积为
1
5
?若存在,确定点T的个数,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线x-2y+2=0经过椭圆
x2
a2
+
y2
b2
=1  (a>b>0)
的一个顶点和一个焦点,那么这个椭圆的方程为
 
,离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线x-2y+2=0过椭圆
x2
a2
+
y2
b2
=1
(a>0,b>0,a>b)的左焦点F1和一个顶点B.则该椭圆的离心率e=
 

查看答案和解析>>

同步练习册答案