【题目】设,是函数的图象上任意两点,若为,的中点,且的横坐标为.
(1)求;
(2)若,,求;
(3)已知数列的通项公式(,),数列的前项和为,若不等式对任意恒成立,求的取值范围.
【答案】(1)2;(2);(3).
【解析】
试题(1)根据中点坐标公式可知,所以,
,整理即可求得的值;(2)由第(1)问可知当时,为定值,观察可知共项,根据倒序相加法可知,,,和均为定值2,共个2,所以和为,即得到的值;(3)由可知,为等差数列乘等比数列,所以求数列的前n项和采用错位相减法,然后代入整理得到恒成立,所以只需,因此根据数列的单调性求出的最大值即可.本题以函数为背景,旨在考查数列的相关知识,考查倒序相加求和,错位相减求和,同时还考查不等式恒成立问题.综合性较强,考查学生对知识总体的把握能力.
试题解析:(1)由已知点M为线段AB的中点, 则:
∴
(2)由(1),当时,有
故
∴
(3)由已知:
不等式即
也即,即恒成立
故只需
令
当时,
当时,,当时,
故;
故
∴,解得:
科目:高中数学 来源: 题型:
【题目】已知椭圆长轴的两个端点分别为,, 离心率.
(1)求椭圆的标准方程;
(2)作一条垂直于轴的直线,使之与椭圆在第一象限相交于点,在第四象限相交于点,若直线与直线相交于点,且直线的斜率大于,求直线的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,设.
(1)若图象中相邻两条对称轴间的距离不小于,求的取值范围;
(2)若的最小正周期为,且当时,的最大值是,求的解析式,并说明如何由的图象变换得到的图象.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为提高产品质量,某企业质量管理部门经常不定期地抽查产品进行检测,现在某条生产线上随机抽取100个产品进行相关数据的对比,并对每个产品进行综合评分(满分100分),将每个产品所得的综合评分制成如图所示的频率分布直方图.记综合评分为80分及以上的产品为一等品.
(1)求图中的值,并求综合评分的中位数;
(2)用样本估计总体,以频率作为概率,按分层抽样的思想,先在该条生产线中随机抽取5个产品,再从这5个产品中随机抽取2个产品记录有关数据,求这2个产品中恰有一个一等品的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正项数列与正项数列的前项和分别为和,且对任意,恒成立.
(1)若,求数列的通项公式;
(2)在(1)的条件下,若,求;
(3)若对任意,恒有及成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果不是等差数列,但若,使得,那么称为“局部等差”数列.已知数列的项数为4,记事件:集合,事件:为“局部等差”数列,则条件概率( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com