精英家教网 > 高中数学 > 题目详情

如图,在圆上任取一点,过点轴的垂线段为垂足.设为线段的中点.
(1)当点在圆上运动时,求点的轨迹的方程;
(2)若圆在点处的切线与轴交于点,试判断直线与轨迹的位置关系.

(1);(2)相切

解析试题分析:(1)由于点在圆上运动, 为线段的中点,根据两点坐标的关系,以及点P在圆上,即可得到结论.
(2)由(1)得到轨迹的方程为椭圆方程.切线PE的斜率有两种情况:斜率不存在则可得直线与轨迹的位置关系为相切.直线斜率存在则假设点P的坐标,写出切线方程,以及点N的坐标,再写出直线MN的方程.联立椭圆方程,根据判别式的值即可得到结论.
(1)设,则在圆上,
即点的轨迹的方程为.                4分
(2)解法一:
(i)当直线的斜率不存在时,直线的方程为.显然与轨迹相切;
(2)当直线的斜率存在时,设的方程为
因为直线与圆相切,所以,即.      7分
又直线的斜率等于,点的坐标为
所以直线的方程为,即.          9分

.故直线与轨迹相切.
综上(i)(2)知,直线与轨迹相切.                 13分
解法二:设),则.              5分
(i)当时,直线的方程为,此时,直线与轨迹相切;
(2)当时,直线的方程为,即
,则,又点
所以直线的方程为,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知圆M的圆心在直线上,且过点
(1)求圆M的方程;
(2)设P为圆M上任一点,过点P向圆O:引切线,切点为Q.试探究:
平面内是否存在一定点R,使得为定值?若存在,求出点R的坐标;若不存在,请说
明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,圆O的直径AB=8,圆周上过点C的切线与BA的延长线交于点E,过点B作AC的平行线交EC的延长线于点P.

(1)求证:BC2=AC·BP;
(2)若EC=2,求PB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C:x2+(y-2)2=5,直线l:mx-y+1=0.
(1)求证:对m∈R,直线l与圆C总有两个不同交点;
(2)若圆C与直线l相交于A,B两点,求弦AB的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知D为△ABC的BC边上一点,⊙O1经过点B、D交AB于另一点E,⊙O2经过点C、D交AC于另一点F,⊙O1与⊙O2交于点G.

(1)求证:∠EAG=∠EFG;
(2)若⊙O2的半径为5,圆心O2到直线AC的距离为3,AC=10,AG切⊙O2于G,求线段AG的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2014·广州模拟)已知☉M:x2+(y-2)2=1,Q是x轴上的动点,QA,QB分别切☉M于A,B两点.
(1)如果|AB|=,求直线MQ的方程.
(2)求证:直线AB恒过一个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知点在圆内,动直线过点且交圆两点,若△ABC的面积的最大值为,则实数的取值范围为      

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆的方程:,其中
(1)若圆C与直线相交于,两点,且,求的值;
(2)在(1)条件下,是否存在直线,使得圆上有四点到直线的距离为,若存在,求出的范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

(几何证明选讲选做题)如图5,AB为⊙O的直径,弦AC、BD交于点P,若AB=3,CD=1,则=      

查看答案和解析>>

同步练习册答案