精英家教网 > 高中数学 > 题目详情
1.f(x)图象如图,则f(x)=$\left\{\begin{array}{l}{x+1}&{-1≤x≤0}\\{-\frac{1}{2}x}&{0<x≤2}\end{array}\right.$.

分析 由函数f(x)的图象可以看出,f(x)是分段函数,每一段都是一次函数,可设一次函数的解析式为y=kx+b,根据该函数所过的点即可求出该解析式,从而得出f(x)的解析式.

解答 解:根据f(x)的图象知道,每一段都是一次函数;
∴-1≤x≤0时,图象过点(-1,0),(0,1),可设对应的一次函数为y=kx+b,则:
$\left\{\begin{array}{l}{0=-k+b}\\{1=b}\end{array}\right.$;
∴k=1,b=1;
∴y=x+1;
同理可求在0<x≤2段上的解析式为y=$-\frac{1}{2}x$;
∴f(x)=$\left\{\begin{array}{l}{x+1}&{-1≤x≤0}\\{-\frac{1}{2}x}&{0<x≤2}\end{array}\right.$.
故答案为:$\left\{\begin{array}{l}{x+1}&{-1≤x≤0}\\{-\frac{1}{2}x}&{0<x≤2}\end{array}\right.$.

点评 考查待定系数求一次函数解析式的方法,求分段函数解析式的方法:求出每一段的解析式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知3f(x)-2f(-x)=-2x+1,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求下列函数的值域:
(1)y=2x+1,x∈{1,2,3,4,5};
(2)y=$\sqrt{x}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知$\overrightarrow{a}$,$\overrightarrow{b}$是两个不共线的向量.且$\overrightarrow{a}$=(cosa,sina).$\overrightarrow{b}$=(cosβ,sinβ).
(1)求证:$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$垂直;
(2)若α∈(-$\frac{π}{4}$,$\frac{π}{4}$),β=$\frac{π}{4}$.且$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{3}{5}$.求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求下列数列的第5项和第9项.
(1)-4,2,-1,…;
(2)5,10,20,…;
(3)$\frac{3}{4}$,$\frac{1}{4}$,$\frac{1}{12}$,…;
(4)$\sqrt{3}$,$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{4}$,….

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=xex,g(x)=ax-1
(1)求f(x)的单调区间;
(2)若对任意x∈[$\frac{1}{2}$,1],g(x)>f(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,∠A=$\frac{π}{3}$,$\overrightarrow{m}$=(cosB,-sinB),$\overrightarrow{n}$=(cosC,sinC).
(1)求$\overrightarrow{m}$•$\overrightarrow{n}$的大小;
(2)若a、b、c为角A、B、C的对边,a=2,cosB=$\frac{\sqrt{3}}{3}$,求b的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2+ax+3,若f(x)在区间[1,4]上为单调函数,则a的范围是a≥-2或a≤-8;
变式为:已知函数f(x)=x2+ax+3.
①若y=f(x)在区间[1,4]有最大值10,则a的值为-$\frac{9}{4}$;
②若f(x)=0在区间[1,4]有两个不相等的实根,则a的范围为-4<a<-2$\sqrt{3}$;
③若f(x)=0在区间[1,4]有解,则a的范围为-$\frac{19}{4}$≤a≤-2$\sqrt{3}$;
④若y=f(x)在区间[1,4]内存在x0,使f(x0)>0,则a的范围为a>-$\frac{19}{4}$;
⑤若y=f(x)在区间[1,4]上恒为正数,则a的范围为a>-2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知$\overrightarrow{a}$=(-1,-3,2),$\overrightarrow{b}$=(1,2,0),若存在$\overrightarrow{c}$使$\overrightarrow{a}$∥$\overrightarrow{c}$且$\overrightarrow{b}$•$\overrightarrow{c}$=5,则$\overrightarrow{c}$=($\frac{5}{7}$,$\frac{15}{7}$,-$\frac{10}{7}$).

查看答案和解析>>

同步练习册答案