精英家教网 > 高中数学 > 题目详情
如图,在正方体ABCD-A1B1C1D1中,点N在BD上,点M在B1C上,且CM=DN,求证:MN∥平面AA1B1B.
分析:欲证MN∥平面AA1B1B,只需证明MN所在的平面平行于平面AA1B1B,根据点N在BD上,点M在B1C上,且CM=DN,只需作MP∥BB1,交BC于点P,连接NP,就能构造平面MNP,利用成比例线段证明面MNP∥面AA1B1B,再利用面面平行的性质判断即可证明
MN∥面AA1B1B.
解答::如图,作MP∥BB1,交BC于点P,连接NP.
∵MP∥BB1,∴
CM
MB1
=
CP
PB

∵BD=B1C,DN=CM,∴B1M=BN.
CM
MB1
=
DN
NB
,∴
CP
PB
=
DN
NB

∴NP∥CD∥AB.∴面MNP∥面AA1B1B.
∴MN∥面AA1B1B.
点评:本题主要考查了在正方体中的线面平行的证明,考查学生的空间想象力,识图能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网若Rt△ABC中两直角边为a、b,斜边c上的高为h,则
1
h2
=
1
a2
+
1
b2
,如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记M=
1
PO2
,N=
1
PA2
+
1
PB2
+
1
PC2
,那么M、N的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记M=
1
PO2
N=
1
PA2
+
1
PB2
+
1
PC2
,那么M,N的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网若Rt△ABC中两直角边为a、b,斜边c上的高为h,则
1
h2
=
1
a2
+
1
b2
,如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,类比平面几何中的结论,得到此三棱锥中的一个正确结论为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点,
(1)求证:AC⊥平面D1DB;
(2)BD1∥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的主视图与左视图的面积的比值为(  )

查看答案和解析>>

同步练习册答案