精英家教网 > 高中数学 > 题目详情

已知函数,若f[f(x)]=2,则x的取值范围是(   )

A.      B.[-1,1]  C.(-∞,-1)∪(1,+∞)  D.{2}∪[-1,1]

 

【答案】

D

【解析】解:因为分段函数,则对x分情况讨论,故f[f(x)]=2,x=2,或者f(x)=x, x属于[-1,1]

因此选D

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三次函数f(x)的导函数f′(x)=3x2-3ax,f(0)=b,a、b为实数.
(1)若曲线y=f(x)在点(a+1,f(a+1))处切线的斜率为12,求a的值;
(2)若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,且1<a<2,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•深圳一模)已知函数f(x)=ax+x2-xlna-b(a,b∈R,a>1),e是自然对数的底数.
(1)试判断函数f(x)在区间(0,+∞)上的单调性;
(2)当a=e,b=4时,求整数k的值,使得函数f(x)在区间(k,k+1)上存在零点;
(3)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在R上可导,其导函数为f′(x),若f(x)满足:(x-1)[f′(x)-f(x)]>0,f(2-x)=f(x)e2-2x,则下列判断一定正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为[0,1],且f(x)的图象连续不间断.若函数f(x)满足:对于给定的m(m∈R且0<m<1),存在x0∈[0,1-m],使得f(x0)=f(x0+m),则称f(x)具有性质P(m).
(Ⅰ)已知函数f(x)=(x-
1
2
2,x∈[0,1],判断f(x)是否具有性质P(
1
3
),并说明理由;
(Ⅱ)已知函数 f(x)=
-4x+1,0≤x≤
1
4
4x-1,
1
4
<x<
3
4
-4x+5,
3
4
≤x≤1
,若f(x)具有性质P(m),求m的最大值;
(Ⅲ)若函数f(x)的定义域为[0,1],且f(x)的图象连续不间断,又满足f(0)=f(1),求证:对任意k∈N*且k≥2,函数f(x)具有性质P(
1
k
).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+1(a,b为实数),x∈R,F(x)=
f(x)(x>0)
-f(x)(x<0)

(1)若f(-1)=0,且函数f(x)的值域为[0,+∞),求F(x)的表达式;
(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;
(3)设m•n<0,m+n>0,a>0且f(x)为偶函数,判断F(m)+F(n)能否大于零.

查看答案和解析>>

同步练习册答案