精英家教网 > 高中数学 > 题目详情
(14分)已知函数
(Ⅰ)求函数的最小值;
(Ⅱ)求证:
(Ⅲ)对于函数定义域上的任意实数,若存在常数,使得都成立,则称直线为函数的“分界线”.设函数是否存在“分界线”?若存在,求出的值;若不存在,请说明理由.
(Ⅰ)的最小值为;(Ⅱ)详见解析;(Ⅲ)

试题分析:(Ⅰ)求导得:,由此可得函数上递减,上递增,
从而得的最小值为
(Ⅱ)注意用第(Ⅰ)小题的结果.由(Ⅰ)知.这个不等式如何用?结合所在证的不等式可以看出,可以两端同时乘以变形为:,把换成,在这个不等式中令然后将各不等式相乘即得.
(Ⅲ)结合题中定义可知,分界线就是一条把两个函数的图象分开的直线.那么如何确定两个函数是否存在分界线?显然,如果两个函数的图象没有公共点,则它们有无数条分界线,如果两个函数至少有两个公共点,则它们没有分界线.所以接下来我们就研究这两个函数是否有公共点.为此设.通过求导可得当取得最小值0,这说明的图象在处有公共点.如果它们存在分界线,则这条分界线必过该点.所以设的“分界线”方程为.由于的最小值为0,所以,所以分界线必满足.下面就利用这两个不等式来确定的值.
试题解析:(Ⅰ)解:因为,令,解得
,解得
所以函数上递减,上递增,
所以的最小值为.                           3分
(Ⅱ)证明:由(Ⅰ)知函数取得最小值,所以,即
两端同时乘以,把换成,当且仅当时等号成立.
得,

将上式相乘得
.         9分
(Ⅲ)设.

所以当时,;当时,
因此取得最小值0,则的图象在处有公共点
存在 “分界线”,方程为.
恒成立,
恒成立.
所以成立.因此.
下面证明成立.
.
所以当时,;当时,.
因此取得最大值0,则成立.
所以.                                  14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,一种医用输液瓶可以视为两个圆柱的组合体.开始输液时,滴管内匀速滴下球状液体,其中球状液体的半径毫米,滴管内液体忽略不计.

(1)如果瓶内的药液恰好分钟滴完,问每分钟应滴下多少滴?
(2)在条件(1)下,设输液开始后(单位:分钟),瓶内液面与进气管的距离为(单位:厘米),已知当时,.试将表示为的函数.(注:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当时,车流速度是车流密度x的一次函数.
(Ⅰ)当时,求函数的表达式;
(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观察点的车辆数,单位:辆/每小时)可以达到最大,并求出最大值(精确到1辆/小时).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一种放射性元素,最初的质量为,按每年衰减.
(1)求年后,这种放射性元素的质量的函数关系式;
(2)求这种放射性元素的半衰期(质量变为原来的时所经历的时间).(

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数的两个极值点分别为,且,点表示的平面区域为,若函数的图像上存在区域内的点,则实数的取值范围是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设集合A=B=,从A到B的映射在映射下,B中的元素为(4,2)对应的A中元素为 (   )
A.(4,2)B.(1,3)C.(6,2)D.(3,1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以下四个命题:
①函数既无最小值也无最大值;
②在区间上随机取一个数,使得成立的概率为
③若不等式对任意正实数恒成立,则正实数的最小值为16;
④已知函数,若方程恰有三个不同的实根,则实数的取值范围是;以上正确的命题序号是:_______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列四类函数中,具有性质“对任意的,函数满足
的是( )
A.幂函数B.对数函数C.指数函数D.余弦函数

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数满足对任意的都有,则(  )
A.2011B.2010C.4020D.4022

查看答案和解析>>

同步练习册答案