精英家教网 > 高中数学 > 题目详情

【题目】随着手机的发展,微信逐渐成为人们支付购物的一种形式.某机构对使用微信支付的态度进行调查,随机抽取了50人,他们年龄的频数分布及对使用微信支付赞成人数如下表.

年龄(单位:岁)

频数

5

10

15

10

5

5

赞成人数

5

10

12

7

2

1

1)若以年龄45岁为分界点,由以上统计数据完成下面列联表,并判断是否有99%的把握认为使用微信支付的态度与人的年龄有关;

年龄不低于45岁的人数

年龄低于45岁的人数

合计

赞成

不赞成

合计

2)若从年龄在的被调查人中按照赞成与不赞成分层抽样,抽样人数分别3人与2人,现对抽样的5人进行追踪调查,在5人中抽取3人做专访,求3人中不赞成使用微信支付的人数的分布列和期望值.

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中.

【答案】1)列联表见解析,有;(2)分布列见解析,

【解析】

根据频率分布直方图补全列联表,代入公式即可求出,对比参考数据即可得出答案;(2)根据分层抽样的方法,抽取的人中,支持微信支付的有人,不支持微信支付的有人,根据超几何分布的特点,求得分布列和数学期望.

:1)由频数分布表得列联表如下:

年龄不低于45岁的人数

年龄低于45岁的人数

合计

赞成

不赞成

13

合计

所以有的把握认为使用微信交流的态度与人的年龄有关;

2)年龄在中支持微信支付的有人,不支持微信支付的有6

由分层抽样方法可知:抽取的人中,支持微信支付的有人,不支持微信支付的有

人中不支持微信支付的人数为,则所有可能的取值为:

的分布列为:

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中a为正实数.

1)求函数的单调区间;

2)若函数有两个极值点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若点在函数的图象上运动,直线与函数的图象不相交,求点到直线距离的最小值;

(Ⅱ)若当时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数的单调区间;

(Ⅱ)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,用种不同的颜色给图中的个格子涂色,每个格子涂一种颜色,要求最多使用种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中为自然对数的底数.

1)若在定义域上是增函数,求的取值范围;

2)若直线是函数的切线,求实数的值;

3)当时,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱台中,是等边三角形,二面角的平面角为.

(I)求证:

(II)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的展开式中第5项与第7项的二项数系数相等,且展开式的各项系数之和为1024,则下列说法正确的是(

A.展开式中奇数项的二项式系数和为256

B.展开式中第6项的系数最大

C.展开式中存在常数项

D.展开式中含项的系数为45

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,过椭圆的焦点且与长轴垂直的弦长为1

1)求椭圆C的方程;

2)设点M为椭圆上第一象限内一动点,AB分别为椭圆的左顶点和下顶点,直线MBx轴交于点C,直线MAy轴交于点D,求证:四边形ABCD的面积为定值.

查看答案和解析>>

同步练习册答案