精英家教网 > 高中数学 > 题目详情
已知sinα=cos2α,α∈(,π),则tanα=________________.

思路解析:本题涉及多种三角函数,题目中就有正弦函数、余弦函数和正切函数三类函数.作为一道求三角函数值的问题,本题所给条件与目标要求有相当的距离,因此解答方法较多.比如既可以利用诱导公式求解,也可以利用和差化积公式求解.

利用和差化积公式,得

sinα-cos2α=sinα-sin(-2α)=2cos(-)·sin(-)=0,由α∈(,π)知cos(-)>0,∴sin(-)=0.

<-<,∴-=π.

故α=,tanα=-.

答案:-

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sinα+cosα=
7
13
(0<α<π),则tanα=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα-cosα=
2
,求sin2α的值(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα+cosα=
15
且0<α<π,求值:
(1)sin3α-cos3α;  
(2)tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinθ+cosθ=
2
2
(0<θ<π),则cos2θ的值为
-
3
2
-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinθ+cosθ=
15
,0<θ<π
,求下列各式的值:
(1)sinθ•cosθ
(2)sinθ-cosθ
(3)tanθ

查看答案和解析>>

同步练习册答案