精英家教网 > 高中数学 > 题目详情

(本小题10分)如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出
(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;
(2)按照给出的尺寸,求该多面体的体积;
 

(1)

(2)所求多面体的体积

解析试题分析:(1)按照三视图的要求直接在正视图下面,画出该多面体的俯视图;
(2)按照给出的尺寸,利用转化思想V=V长方体-V正三棱锥,求该多面体的体积;
解:

(2)所求多面体的体积
考点:本题主要考查了长方体的有关知识、体积计算及三视图的相关知识,对三视图的相关知识掌握不到位,求不出有关数据.三视图是新教材中的新内容,故应该是新高考的热点之一,要予以足够的重视.
点评:解决该试题的关键是能通过三视图还原几何体,,并结合三视图的数据来翻译到几何体中数据,这也是一个难点。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分14分)
如图,已知平面与直线均垂直于所在平面,且,

(Ⅰ)求证:平面; 
(Ⅱ)若,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)如图,已知四棱锥底面为菱形,平面分别是的中点.
(1)证明:
(2)设, 若为线段上的动点,与平面所成的最大角的正切值为
,求此时异面直线AE和CH所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题15分)如图,AC 是圆 O 的直径,点 B 在圆 O 上,∠BAC=30°,BM⊥AC交 AC 于点 M,EA⊥平面ABC,FC//EA,AC=4,EA=3,FC=1.
(I)证明:EM⊥BF;
(II)求平面 BEF 与平面ABC 所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)如图,在三棱锥中,
底面,点
分别在棱上,且
(Ⅰ)求证:平面
(Ⅱ)当的中点时,求与平面所成的角的正弦;
(Ⅲ)是否存在点使得二面角为直二面角?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分).一个几何体的三视图如右图所示(单位:),则该几何体的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)
如图一,平面四边形关于直线对称,
沿折起(如图二),使二面角的余弦值等于。对于图二,

(Ⅰ)求
(Ⅱ)证明:平面
(Ⅲ)求直线与平面所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知如图:平行四边形ABCD中,,正方形ADEF所在平面与平面ABCD垂直,G,H分别是DF,BE的中点.

(1)求证:GH∥平面CDE;
(2)若,求四棱锥F-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是矩形,底面的中点,已知,求:(Ⅰ)三角形的面积;(II)三棱锥的体积

查看答案和解析>>

同步练习册答案