(本题满分16分)已知函数(其中为常数,)为偶函数.
(1) 求的值;
(2) 用定义证明函数在上是单调减函数;
(3) 如果,求实数的取值范围.
(1);(2)见解析;(3)
【解析】
试题分析:(1) 是偶函数有即.…………4分
(2)由(1) . 设, ………………6分
则. ……………………8分
.
在上是单调减函数. ……………………10分
(3)由(2)得在上为减函数,又是偶函数,所以在上为单调增函数. ……………………………………………12分
不等式即,4>.
解得. 所以实数的取值范围是.…………………16分
说明(3)如果是分情况讨论,知道分类给2分.并做对一部分则再给2分.
考点:函数的奇偶性;函数的单调性;利用函数的奇偶性和单调性解不等式。
点评:解这类不等式,关键是利用函数的奇偶性和它在定义域内的单调性,去掉“f”符号,转化为代数不等式组求解,但要特别注意函数定义域的作用。
科目:高中数学 来源:2010-2011年江苏省淮安市楚州中学高二上学期期末考试数学试卷 题型:解答题
(本题满分16分)
已知函数,且对任意,有.
(1)求;
(2)已知在区间(0,1)上为单调函数,求实数的取值范围.
(3)讨论函数的零点个数?(提示:)
查看答案和解析>>
科目:高中数学 来源:2012-2013学年浙江省高三10月阶段性测试理科数学试卷(解析版) 题型:解答题
(本题满分16分)已知函数为实常数).
(I)当时,求函数在上的最小值;
(Ⅱ)若方程在区间上有解,求实数的取值范围;
(Ⅲ)证明:
(参考数据:)
查看答案和解析>>
科目:高中数学 来源:2013届江苏省高二下期中理科数学试卷(解析版) 题型:解答题
(本题满分16分) 已知椭圆:的离心率为,分别为椭圆的左、右焦点,若椭圆的焦距为2.
⑴求椭圆的方程;
⑵设为椭圆上任意一点,以为圆心,为半径作圆,当圆与椭圆的右准线有公共点时,求△面积的最大值.
查看答案和解析>>
科目:高中数学 来源:2014届江苏省高一上学期期中考试数学试卷(解析版) 题型:解答题
(本题满分16分)已知函数是定义在上的偶函数,且当时,。
(Ⅰ)求及的值;
(Ⅱ)求函数在上的解析式;
(Ⅲ)若关于的方程有四个不同的实数解,求实数的取值范围。
查看答案和解析>>
科目:高中数学 来源:江苏省2009-2010学年高二第二学期期末考试 题型:解答题
本题满分16分)已知圆内接四边形ABCD的边长分别为AB = 2,BC = 6,CD = DA = 4 ;求四边形ABCD的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com