精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=$\left\{\begin{array}{l}sin\frac{x}{4}π,x>0\\ f({x+2}),x≤0\end{array}$,则f(-5)的值为(  )
A.0B.$\frac{{\sqrt{2}}}{2}$C.1D.$\sqrt{2}$

分析 利用分段函数的解析式,转化求解即可.

解答 解:函数f(x)=$\left\{\begin{array}{l}sin\frac{x}{4}π,x>0\\ f({x+2}),x≤0\end{array}$,
则f(-5)=f(-5+2)=f(-3)=f(-3+2)=f(-1)=f(-1+2)=f(1)=sin$\frac{π}{4}$=$\frac{\sqrt{2}}{2}$.
故选:B.

点评 本题考查分段函数的应用,抽象函数求值,三角函数求值,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.一平面截球O得到半径为$\sqrt{5}$cm的圆面,球心到这个平面的距离是2cm,则球的半径为3cm.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.一个四棱锥的三视图如图所示(单位:cm),这个四棱锥的体积为72cm3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,ABCD-A1B1C1D1是正方体,O、M、N分别是B1D1、AB1、AD1的中点,直线A1C交平面AB1D1于点P.
(Ⅰ)证明:MN∥平面CB1D1
(Ⅱ)证明:①A、P、O、C四点共面;②A、P、O三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}满足a1=$\frac{2}{5}$,an+1=$\frac{2{a}_{n}}{3-{a}_{n}}$,n∈N*
(1)求a2
(2)求{$\frac{1}{{a}_{n}}$}的通项公式;
(3)设{an}的前n项和为Sn,求证:$\frac{6}{5}$(1-($\frac{2}{3}$)n)≤Sn<$\frac{21}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入了部分数据,如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x            $\frac{π}{3}$      $\frac{5π}{6}$        
Asin(ωx+φ)02-20
(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;
(2)将函数y=f(x)的图象向左平移$\frac{π}{4}$个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知双曲线$\frac{x^2}{12}-\frac{y^2}{4}=1$,过焦点F1的弦AB(A、B在双曲线的同支上)长为8,另一焦点为F2,则△ABF2的周长为8$\sqrt{3}$+16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图一半径为3米的水轮,水轮的圆心O距离水面2米,已知水轮每分钟旋转4圈,水轮上的点P到水面的距离y(米)与时间x(秒)满足函数关系y=Asin(ωx+φ)+2则有(  )
A.ω=$\frac{2π}{15}$,A=3B.ω=$\frac{2π}{15}$,A=5C.ω=$\frac{15π}{2}$,A=5D.ω=$\frac{15π}{2}$,A=3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若x,y满足约束条件$\left\{\begin{array}{l}{x+y≥1}\\{x-y≤2}\\{y≤2}\end{array}\right.$,则z=$\frac{1}{2}$x+y的最小值为$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案