精英家教网 > 高中数学 > 题目详情

【题目】“科技引领,布局未来”科技研发是企业发展的驱动力量。年,某企业连续年累计研发投入搭亿元,我们将研发投入与经营投入的比值记为研发投入占营收比,这年间的研发投入(单位:十亿元)用右图中的折现图表示,根据折线图和条形图,下列结论错误的使( )

A. 年至年研发投入占营收比增量相比年至年增量大

B. 年至年研发投入增量相比年至年增量小

C. 该企业连续年研发投入逐年增加

D. 该企业来连续年来研发投入占营收比逐年增加

【答案】D

【解析】

结合折线图对每一个选项分析判断得解.

对于选项A, 2012年至2013年研发投入占营收比增量为2%,2017年至2018年研发投入占营收比增量为0.3%,所以该选项正确;

对于选项B, 2013年至2014年研发投入增量为2,2015年至2016年研发投入增量为19,所以该选项正确;

对于选项C, 该企业连续12年来研发投入逐年增加,所以该选项是正确的;

对于选项D, 该企业连续12年来研发投入占营收比不是逐年增加,如2009年就比2008的研发投入占营收比下降了.所以该选项是错误的.

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】1)已知两个变量线性相关,若它们的相关性越强,则相关系数的绝对值越接近于1.

2)线性回归直线必过点

3)对于分类变量AB的随机变量越大说明AB有关系的可信度越大.

4)在刻画回归模型的拟合效果时,残差平方和越小,相关指数的值越大,说明拟合的效果越好.

5)根据最小二乘法由一组样本点,求得的回归方程是,对所有的解释变量,的值一定与有误差.

以上命题正确的序号为____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆,直线,直线与椭圆交于不同的两点,点和点关于轴对称,直线轴交于点

1)若点是椭圆的一个焦点,求该椭圆的长轴的长度;

2)若,且,求的值;

3)若,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若函数时取得极值,求实数的值;

(Ⅱ)当时,求零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数

讨论的单调性;

的极值点,且曲线在两点 处的切线相互平行,这两条切线在轴上的截距分别为,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某书店刚刚上市了《中国古代数学史》,销售前该书店拟定了5种单价进行试销,每本单价(元)试销l天,得到如表单价(元)与销量(册)数据:

单价(元)

销量(册)

1)已知销量与单价具有线性相关关系,求关于的线性回归方程;

2)若该书每本的成本为元,要使得售卖时利润最大,请利用所求的线性相关关系确定单价应该定为多少元?(结果保留到整数)

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l1kx-y+4=0与直线l2x+ky-3=0相交于点P,则当实数k变化时,点P到直线4x-3y+10=0的距离的最大值为(  )

A.2B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是中国古代第一部数学专著,全书总结了战国、秦、汉时期的数学成就。“更相减损术”便出自其中,原文记载如下:“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也。”其核心思想编译成如示框图,若输入的分别为45,63,则输出的为( )

A. 2B. 3C. 5D. 9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在教材中,我们已研究出如下结论:平面内条直线最多可将平面分成个部分.现探究:空间内个平面最多可将空间分成多少个部分,.设空间内个平面最多可将空间分成个部分.

(1)求的值;

(2)用数学归纳法证明此结论.

查看答案和解析>>

同步练习册答案