精英家教网 > 高中数学 > 题目详情
13.如图,AB切⊙O于点B,点G为AB的中点,过G作⊙O的割线交⊙O于点C、D,连接AC并延长交⊙O于点E,连接AD并交⊙O于点F,求证:EF∥AB.

分析 证明△GAC∽△GDA,得出∠GAC=∠GDA,利用∠GDA=∠AEF,可得∠GAC=∠AEF,即可证明结论.

解答 证明:∵AB切⊙O于点B,点G为AB的中点,
∴GA2=GB2=GC•GD,
∴△GAC∽△GDA,∴∠GAC=∠GDA,
∵∠GDA=∠AEF,
∴∠GAC=∠AEF,
∴EF∥AB.

点评 本题考查三角形相似的判定与性质,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知tan(α-π)=$\frac{3}{4}$,化简计算:sin2α+2cos2α=$\frac{56}{25}$(填数值).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,圆O的直径AB=10,C为圆上一点,BC=6.过C作圆O的切线l,AD⊥l于点D,且交圆O于点E,求DE长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=lnx+ax2-(2a+1)x,其中$a<\frac{1}{2}$.
(Ⅰ)当a=-2时,求函数f(x)的极大值;
(Ⅱ)若f(x)在区间(0,e)上仅有一个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知定义在R上的可导函数y=f(x)的导函数为f′(x),满足f(x)>f′(x),且f(0)=3,则不等式f(x)>3ex的解集为(  )
A.(-∞,0)B.(0,+∞)C.(-∞,3)D.(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知不等式x2-2x+5-2a≥0
(Ⅰ)若不等式对于任意实数x恒成立,求实数a的取值范围;
(Ⅱ)若存在实数a∈[4,6]使得该不等式成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,△ABC是直角三角形,∠ABC=90°,以AB为直径的圆O交AC于N,过N作圆O的切线交BC于D,OD交圆O于点M.
(Ⅰ)证明:OD∥AC;
(Ⅱ)证明:$\frac{4DM}{CN}=\frac{DM}{DM+AB}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={x|-1<x≤2},集合B={x|-2≤x<3},则∁BA=(  )
A.[-2,-1]∪(2,3)B.[-2,-1)∪(2,3]C.(-2,-1]∪[2,3]D.(-2,-1)∪(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.“中国式过马路”存在很大的交通安全隐患,某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:
男性女性合计
反感10
不反感8
合计30
已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是$\frac{8}{15}$.
(Ⅰ)请将上面的列联表补充完整(在答题卷上直接填写结果,不需要写求解过程),并据此资料判断是否有95%的把握认为反感“中国式过马路”与性别有关?
(Ⅱ)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2≥k00.150.100.050.0250.010
k02.0722.7063.8415.0246.635

查看答案和解析>>

同步练习册答案