精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分12分)如图,曲线由上半椭圆和部分抛物线 连接而成, 的公共点为,其中的离心率为.

)求的值;

)过点的直线分别交于(均异于点),若,求直线的方程.

【答案】() ; ().

【解析】试题分析:(1)由上半椭圆和部分抛物公共点为,得,设的半焦距为,由,解得

2)由(1)知,上半椭圆的方程为,易知,直线轴不重合也不垂直,故可设其方程为,并代入的方程中,整理得:

由韦达定理得,又,得,从而求得,继而得点的坐标为,同理,由得点的坐标为,最后由,解得,经检验符合题意,故直线的方程为.

试题解析:(1)在方程中,令,得

方程中,令,得

所以

的半焦距为,由,解得

所以

2)由(1)知,上半椭圆的方程为

易知,直线轴不重合也不垂直,设其方程为

代入的方程中,整理得:

*

设点的坐标

由韦达定理得

,得,从而求得

所以点的坐标为

同理,由得点的坐标为

,

,解得

经检验, 符合题意,

故直线的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】共享单车给市民出行带来了诸多便利,某公司购买了一批单车投放到某地给市民使用,

据市场分析,每辆单车的营运累计利润y单位:元)与营运天数x满足函数关系

.

1)要使营运累计利润高于800元,求营运天数的取值范围;

2)每辆单车营运多少天时,才能使每天的平均营运利润的值最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】先后抛掷两枚大小相同的骰子.

1)求点数之和出现7点的概率;
2)求出现两个6点的概率;

(3)求点数之和能被3整除的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx﹣ x2(a∈R).
(1)若x>0,恒有f(x)≤x成立,求实数a的取值范围;
(2)若a=0,求f(x)在区间[t,t+2](t>0)上的最小值;
(3)若函数g(x)=f(x)﹣x有两个极值点x1 , x2 , 求证: + >2ae.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的图象与函数y=x3﹣3x2+2的图象关于点( ,0)对称,过点(1,t)仅能作曲线y=f(x)的一条切线,则实数t的取值范围是(
A.(﹣3,﹣2)
B.[﹣3,﹣2]
C.(﹣∞,﹣3)∪(﹣2,+∞)
D.(﹣∞,﹣3)∪[﹣2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于的方程,根据下列条件,分别求出的值.

(1)方程两实根的积为5;

(2)方程的两实根满足.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线过坐标原点的方程为

(1)当直线的斜率为与圆相交所得的弦长

(2)设直线与圆交于两点的中点求直线的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)在R上的导函数为f'(x),对于任意的实数x,都有f'(x)+2017<4034x,若f(t+1)<f(﹣t)+4034t+2017,则实数t的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆Cx2y2+2x-4y+3=0.

(1)若直线l过点(-2,0)且被圆C截得的弦长为2,求直线l的方程;

(2)从圆C外一点P向圆C引一条切线,切点为MO为坐标原点,且|PM|=|PO|,求|PM|的最小值.

查看答案和解析>>

同步练习册答案