【题目】某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本C(x),当年产量不足80千件时,C(x)= x2+10x(万元);当年产量不小于80千件时C(x)=51x+ ﹣1450(万元),通过市场分析,若每件售价为500元时,该厂本年内生产该商品能全部销售完.
(1)写出年利润L(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获的利润最大?
【答案】
(1)解:∵每件商品售价为0.05万元,
∴x千件商品销售额为0.05×1000x万元,
①当0<x<80时,根据年利润=销售收入﹣成本,
∴L(x)=(0.05×1000x)﹣ ﹣10x﹣250=﹣ +40x﹣250;
②当x≥80时,根据年利润=销售收入﹣成本,
∴L(x)=(0.05×1000x)﹣51x﹣ +1450﹣250=1200﹣(x+ ).
综合①②可得,L(x)=
(2)解:①当0<x<80时,L(x)=﹣ +40x﹣250=﹣ +950,
∴当x=60时,L(x)取得最大值L(60)=950万元;
②当x≥80时,L(x)=1200﹣(x+ )≤1200﹣2 =1200﹣200=1000,
当且仅当x= ,即x=100时,L(x)取得最大值L(100)=1000万元.
综合①②,由于950<1000,
∴年产量为100千件时,该厂在这一商品的生产中所获利润最大
【解析】(1)根据题意对x进行分段,列出相应的函数解析式即可,(2)分别在分段中求出函数的最大值,分析可得所获利润最大时的年产量.
科目:高中数学 来源: 题型:
【题目】若函数f(x)=2|x﹣4|﹣logax+2无零点,则实数a的取值范围为;
若函数f(x)=|2x﹣2|﹣b有两个零点,则实数b的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设△ABC的三边长分别为a、b、c,△ABC的面积为S,内切圆半径为r,则r= ;类比这个结论可知:四面体P﹣ABC的四个面的面积分别为S1、S2、S3、S4 , 内切球的半径为r,四面体P﹣ABC的体积为V,则r= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= +bx(其中a,b为常数)的图象经过(1,3)、(2,3)两点.
(I)求a,b的值,判断并证明函数f(x)的奇偶性;
(II)证明:函数f(x)在区间[ ,+∞)上单调递增.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:方程 表示焦点在y轴上的双曲线,命题q:点(m,1)在椭圆 的内部;命题r:函数f(m)=log2(m﹣a)的定义域;
(1)若p∧q为真命题,求实数m的取值范围;
(2)若p是r的充分不必要条件,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: (a>b>0)的短轴长为2,离心率 .
(1)求椭圆C的方程;
(2)若斜率为k的直线过点M(2,0),且与椭圆C相交于A,B两点.试求k为何值时,三角形OAB是以O为直角顶点的直角三角形.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设F1 , F2分别是C: + =1(a>b>0)的左,右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.
(1)若直线MN的斜率为 ,求C的离心率;
(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ,若方程f(x)=a有四个不同的解x1 , x2 , x3 , x4 , 且x1<x2<x3<x4 , 则x3(x1+x2)+ 的取值范围是( )
A.(﹣1,+∞)
B.(﹣1,1]
C.(﹣∞,1)
D.[﹣1,1)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com