【题目】已知圆.由直线上离圆心最近的点向圆引切线,切点为,则线段的长为__________.
【答案】
【解析】圆心到直线的距离:,
结合几何关系可得线段的长度为.
【题型】填空题
【结束】
16
【题目】设是两个非零平面向量,则有:
①若,则
②若,则
③若,则存在实数,使得
④若存在实数,使得,则或四个命题中真命题的序号为 __________.(填写所有真命题的序号)
科目:高中数学 来源: 题型:
【题目】已知椭圆:经过点(,),且两个焦点,的坐标依次为(1,0)和(1,0).
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设,是椭圆上的两个动点,为坐标原点,直线的斜率为,直线的斜率为,求当为何值时,直线与以原点为圆心的定圆相切,并写出此定圆的标准方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学为研究学生的身体素质与与课外体育锻炼时间的关系,对该校200名高三学生的课外体育锻炼平均每天运动的时间进行调查,如下表:(平均每天锻炼的时间单位:分钟)
将学生日均课外体育运动时间在上的学生评价为“课外体育达标”.
平均每天锻炼的时间(分钟) | ||||||
总人数 | 20 | 36 | 44 | 50 | 40 | 10 |
请根据上述表格中的统计数据填写下面列联表,并通过计算判断是否能在犯错误的概率不超过的前提下认为“课外体育达标”与性别有关?
课外体育不达标 | 课外体育达标 | 合计 | |
男 | |||
女 | 20 | 110 | |
合计 |
从上述200名学生中,按“课外体育达标”、“课外体育不达标”分层抽样,抽取4人得到一个样本,再从这个样本中抽取2人,求恰好抽到一名“课外体育不达标”学生的概率.
参考公式:,其中.
参考数据:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在中,,且.
(1)求角的大小;
(2)设数列满足,前项和为,若,求的值.
【答案】(1);(2)或.
【解析】试题分析:
(1)由题意结合三角形内角和为可得.由余弦定理可得,,结合勾股定理可知为直角三角形,,.
(2)结合(1)中的结论可得 .则 ,据此可得关于实数k的方程,解方程可得,则或.
试题解析:
(1)由已知,又,所以.又由,
所以,所以,
所以为直角三角形,,.
(2) .
所以 ,由,得
,所以,所以,所以或.
【题型】解答题
【结束】
18
【题目】已知点是平行四边形所在平面外一点,如果,,.(1)求证:是平面的法向量;
(2)求平行四边形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)求圆心在直线上,且与直线相切于点的圆的方程;
(2)求与圆外切于点且半径为的圆的方程.
【答案】(1);(2).
【解析】试题分析:
(1)由题意可得圆的一条直径所在的直线方程为,据此可得圆心,半径,则所求圆的方程为.
(2)圆的标准方程为,得该圆圆心为,半径为,两圆连心线斜率.设所求圆心为,结合弦长公式可得,.则圆的方程为.
试题解析:
(1)过点且与直线垂直的直线为,
由 .
即圆心,半径,
所求圆的方程为.
(2)圆方程化为,得该圆圆心为,半径为,故两圆连心线斜率.设所求圆心为,
,∴,
,∴.
∴.
点睛:求圆的方程,主要有两种方法:
(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线.
(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式.
【题型】解答题
【结束】
20
【题目】如图所示,平面,点在以为直径的上,,,点为线段的中点,点在弧上,且.
(1)求证:平面平面;
(2)求证:平面平面;
(3)设二面角的大小为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四边形 中, , , , , , 是 上的点, , 为 的中点,将 沿 折起到 的位置,使得 ,如图2.
(1)求证:平面平面 ;
(2)求二面角 的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com