【题目】汽车在行驶中,由于惯性,刹车后还要继续向前滑行一段距离才能停止,一般称这段距离为“刹车距离”.刹车距离是分析交通事故的一个重要依据.在一个限速为的弯道上,甲、乙两辆汽车相向而行,突然发现有危险情况,同时紧急刹车,但还是发生了交通事故.事后现场勘查,测得甲车的刹车距离略超过,乙车的刹车距离略超过.已知甲、乙两种车型的刹车距离与车速之间的关系分别为:,.根据以上信息判断:在这起交通事故中,应负主要责任的可能是_______________车,理由是__________________________.
科目:高中数学 来源: 题型:
【题目】设函数.
(1)当时,求函数在点处的切线方程;
(2)若函数的图象与轴交于两点,且,求的取值范围;
(3)在(2)的条件下,证明:为函数的导函数).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列的前项和,是常数且.
(1)证明:是等差数列;
(2)证明:以为坐标的点落在同一直线上,并求直线方程;
(3)设,是以为圆心,为半径的圆,求使得点都落在圆外时,的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某运动员每次投篮命中的概率低于,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,该运动员三次投篮恰有两次命中的概率为( )
A.0.35B.0.25C.0.20D.0.15
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国南宋数学家杨辉在所著的《详解九章算法》一书中用如图所示的三角形解释二项展开式的系数规律,去掉所有为1的项,依次构成2,3,3,4,6,4,5,10,10,5,6…,则此数列的前50项和为( )
A.2025B.3052C.3053D.3049
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设A,B是R中两个子集,对于x∈R,定义:,
①若AB.则对任意x∈R,m(1-n)=______;
②若对任意x∈R,m+n=1,则A,B的关系为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司甲、乙两个班组分别试生产同一种规格的产品,已知此种产品的质量指标检测分数不小于70时,该产品为合格品,否则为次品,现随机抽取两个班组生产的此种产品各100件进行检测,其结果如下表:
质量指标检测分数 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
甲班组生产的产品件数 | 7 | 18 | 40 | 29 | 6 |
乙班组生产的产品件数 | 8 | 12 | 40 | 32 | 8 |
(1)根据表中数据,估计甲、乙两个班组生产该种产品各自的不合格率;
(2)根据以上数据,完成下面的2×2列联表,并判断是否有95%的把握认为该种产品的质量与生产产品的班组有关?
甲班组 | 乙班组 | 合计 | |
合格品 | |||
次品 | |||
合计 |
(3)若按合格与不合格比例,从甲班组生产的产品中抽取4件产品,从乙班组生产的产品中抽取5件产品,记事件A:从上面4件甲班组生产的产品中随机抽取2件,且都是合格品;事件B:从上面5件乙班组生产的产品中随机抽取2件,一件是合格品,一件是次品,试估计这两个事件哪一种情况发生的可能性大.
附:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com