精英家教网 > 高中数学 > 题目详情

【题目】为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中,从男生中随机抽取了70人,从女生中随机抽取了50人,男生中喜欢数学课程的占,女生中喜欢数学课程的占,得到如下列联表.

喜欢数学课程

不喜欢数学课程

合计

男生

女生

合计

(1)请将列联表补充完整;试判断能否有90%的把握认为喜欢数学课程与否与性别有关;

(2)从不喜欢数学课程的学生中采用分层抽样的方法,随机抽取6人,现从6人中随机抽取2人,求抽取的学生中至少有1名是女生的概率..

附:,其中.

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(1)见解析,没有的把握(2)

【解析】试题分析:(1)将数据代入卡方公式求得再对照参考数据得结论(2)先根据分层抽样确定抽取男生女生人数,再利用枚举法确定从6人中随机抽取2人总事件数,从中确定至少有1名是女生事件数,最后根据古典概型概率公式求概率

试题解析:解:(Ⅰ)列联表补充如下

喜欢数学课程

不喜欢数学课程

合计

男生

女生

合计

由题意得

,∴没有的把握认为喜欢数学课程与否与性别有关.)

(Ⅱ)用分层抽样的方法抽取时,抽取比例是

则抽取男生人,抽取女生

记抽取的女生为,抽取的男生为

从中随机抽取名学生共有种情况:

其中至少有名是女生的事件为:

种情况.

抽取的学生中至少有名是女生为事件,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin +e|x1| , 有下列四个结论:
①图象关于直线x=1对称;
②f(x)的最大值是2;
③f(x)的最大值是﹣1,;
④f(x)在区间[﹣2015,2015]上有2015个零点.
其中正确的结论是(写出所有正确的结论序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在边长为4的菱形中, ,点分别在边上.点与点不重合, ,沿翻折到的位置,使平面平面

(Ⅰ)求证: 平面

(Ⅱ)记三棱锥的体积为,四棱锥的体积为,且,求此时线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点为圆上一动点,轴于点,若动点满足(其中为非零常数)

(1)求动点的轨迹方程;

(2)当时,得到动点的轨迹为曲线,斜率为1的直线与曲线相交于两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列{an}满足a1=1,(n+1)a2n+1+an+1an﹣na =0,数列{bn}的前n项和为Sn且Sn=1﹣bn
(1)求{an}和{bn}的通项;
(2)令cn= , ①求{cn}的前n项和Tn
②是否存在正整数m满足m>3,c2 , c3 , cm成等差数列?若存在,请求出m;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cosx+ax2﹣1,a∈R.
(1)当a=0时,求函数f(x)在 处的切线方程;
(2)当a=1时,求函数f(x)在[﹣π,π]上的最大值和最小值;
(3)若对于任意的实数x恒有f(x)≥0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三个内角A,B,C所对的边分别为a,b,c,向量 =(c+a,b), =(c﹣a,b﹣c),且
(1)求角A的大小;
(2)若a=3,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 ,其中 ,k∈R.
(1)当k为何值时,有
(2)若向量 的夹角为钝角,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正方形ABCD的边长为6,点E,F分别在边AB,AD上,AE=AF=4,现将△AEF沿线段EF折起到△A′EF位置,使得A′C=2

(1)求五棱锥A′﹣BCDFE的体积;
(2)求平面A′EF与平面A′BC的夹角.

查看答案和解析>>

同步练习册答案