精英家教网 > 高中数学 > 题目详情

【题目】已知函数
(1)求函数f(x)的周期以及单调递增区间;
(2)在给出的直角坐标系中,请用五点作图法画出f(x)在区间[0,π]上的图象.

【答案】解:(1)∵
∴f(x)的周期T==π,由2kπ﹣≤2x﹣≤2kπ+,k∈Z,即可解得单调递增区间为:[kπ﹣,kπ+],k∈Z,
(2)列表如下:

2x﹣

x

0

π

y

0

2

0

﹣2

对应的图象如下:

【解析】(1)根据周期公式可求周期,由三角函数的单调性的性质即可求函数y=f(x)的单调递增区间;
(2)列表,描点,连线即可利用“五点作图法”画出函数y=f(x)在[0,π]上的图象.
【考点精析】关于本题考查的五点法作函数y=Asin(ωx+φ)的图象,需要了解描点法及其特例—五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线)才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市文化部门为了了解本市市民对当地地方戏曲是否喜爱,从15-65岁的人群中随机抽样了人,得到如下的统计表和频率分布直方图.

(1)写出其中的值;

(2)若从第1,2,3,组回答喜欢地方戏曲的人中用分层抽样的方法抽取6人,求这三组每组分别抽取多少人?

(3)在(2)抽取的6人中随机抽取2人,求抽取的2人年龄都在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,空间几何体中,四边形是梯形,四边形是矩形,且平面平面 是线段上的动点.

(1)求证:

(2)试确定点的位置,使平面,并说明理由;

(3)在(2)的条件下,求空间几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,圆

1)过点的圆的切线只有一条,求的值及切线方程;

2)若过点且在两坐标轴上截距相等的直线被圆截得的弦长为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 处取得极值,且,曲线处的切线与直线垂直.

(Ⅰ)求的解析式;

(Ⅱ)证明关于的方程至多只有两个实数根(其中的导函数, 是自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,斜率为的直线过点,且和以为圆相切.

(1)求圆的方程;

(2)在圆上是否存在点,使得,若存在,求出所有的点的坐标;若不存在说明理由;

(3)若不过的直线与圆交于 两点,且满足 的斜率依次为等比数列,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中, 边上的高,沿折起,使

(Ⅰ)证明:平面平面

(Ⅱ)的中点,求与底面所成角的正切值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·全国卷Ⅲ文,18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:

最高气温

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天数

2

16

36

25

7

4

以最高气温位于各区间的频率估计最高气温位于该区间的概率.

(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;

(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)已知一个圆过直线与圆的两个交点,且面积最小,求此圆的方程;

(2)抛物线的顶点在原点,以椭圆的右焦点为焦点,过点的直线与抛物线有且仅有一个公共点,求直线的方程.

查看答案和解析>>

同步练习册答案