精英家教网 > 高中数学 > 题目详情

【题目】已知函数
(1)求函数y=f(x)的极值;
(2)若存在实数x0∈(﹣1,0),且 ,使得 ,求实数a的取值范围.

【答案】
(1)解:f′(x)=ax2+2x,

令f′(x)=0得x2=0,

x

0

(0,+∞)

f′(x)

+

0

_

0

+

f(x)

极大值

极小值

∴函数y=f(x)的极大值为

极小值为f(0)=0.


(2)解:若存在 ,使得

则由(1)可知,需要 (如图1)或 (如图2).

(图1),

(图2),

于是可得


【解析】(1)求出函数的导数,解关于导函数的方程,求出函数的单调区间,从而求出函数的极值即可;(2)根据函数的单调性得到关于a的不等式组,结合图象解出即可.
【考点精析】关于本题考查的利用导数研究函数的单调性和函数的极值与导数,需要了解一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】过点C(3,4)且与轴,轴都相切的两个圆的半径分别为,则=______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|0<x<3},B= ,则集合A∩(RB)为(
A.[0,1)
B.(0,1)
C.[1,3)
D.(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:①残差可用来判断模型拟合的效果;

②设有一个回归方程,变量x增加一个单位时,y平均增加5个单位;

③线性回归方程必过

④在一个2×2列联表中,由计算得=13.079,则有99%的把握确认这两个变量间有关系(其中);

其中错误的个数是(

A. 0 B. 1 C. 2 D. 3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的各项均为正数,满足a1=1,ak+1﹣ak=ai . (i≤k,k=1,2,3,…,n﹣1)
(1)求证:
(2)若{an}是等比数列,求数列{an}的通项公式;
(3)设数列{an}的前n项和为Sn , 求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在下列命题中:
①存在一个平面与正方体的12条棱所成的角都相等;
②存在一个平面与正方体的6个面所成较小的二面角都相等;
③存在一条直线与正方体的12条棱所成的角都相等;
④存在一条直线与正方体的6个面所成的角都相等.
其中真命题的个数为(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图三棱柱中,侧面为菱形,.

(Ⅰ)证明:

(Ⅱ)若AB=BC,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 )的焦点为 在抛物线直线 与抛物线 交于 两点 为坐标原点.

(1)求抛物线 的方程

(2)求 的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4﹣4:坐标系与参数方程
在平面直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l上两点M,N的极坐标分别为(2,0),( ),圆C的参数方程 (θ为参数).
(Ⅰ)设P为线段MN的中点,求直线OP的平面直角坐标方程;
(Ⅱ)判断直线l与圆C的位置关系.

查看答案和解析>>

同步练习册答案