【题目】一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取个作为样本,称出它们的重量(单位:克),重量分组区间为,,,,由此得到样本的重量频率分布直方图(如图).
(Ⅰ)求的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;
(Ⅱ)从盒子中随机抽取个小球,其中重量在内的小球个数为,求的分布列和数学期望. (以直方图中的频率作为概率).
【答案】(Ⅰ),众数20,平均数24.6;(Ⅱ)分布列见解析,期望为.
【解析】
试题分析:(Ⅰ)由频率分布直方图中所有小矩形面积(频率)之和为1,可计算出,众数取频率最大即矩形最高的那个矩形的中点横坐标,平均值用各矩形中点值乘频率相加即得;(Ⅱ)的可能取值为、、、,利用样本估计总体,该盒子中小球重量在内的概率为,因此有,从而可得分布列,最后由期望公式可计算出期望.
试题解析:(Ⅰ)由题意,得,
解得;
又由最高矩形中点的的横坐标为20,可估计盒子中小球重量的众数约为20(克)
而个样本小球重量的平均值为:(克)
故由样本估计总体,可估计盒子中小球重量的平均值约为克;
(Ⅱ)利用样本估计总体,该盒子中小球重量在内的概率为
则.的可能取值为、、、,
,,
,.
的分布列为:
.(或者)
科目:高中数学 来源: 题型:
【题目】抛物线的顶点为坐标原点O,焦点F在轴正半轴上,准线与圆相切.
(Ⅰ)求抛物线的方程;
(Ⅱ)已知直线和抛物线交于点,命题:“若直线过定点(0,1),则 ”,
请判断命题的真假,并证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C经过点A(﹣2,0),B(0,2),且圆心C在直线y=x上,又直线l:y=kx+1与圆C相交于P、Q两点.
(1)求圆C的方程;
(2)若=﹣2,求实数k的值;
(3)过点(0,4)作动直线m交圆C于E,F两点.试问:在以EF为直径的所有圆中,是否存在这样的圆P,使得圆P经过点M(2,0)?若存在,求出圆P的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若有穷数列(是正整数),满足即(是正整数,且),就称该数列为“对称数列”。例如,数列与数列都是“对称数列”.
(1)已知数列是项数为9的对称数列,且,,,,成等差数列, , ,试求, , , ,并求前9项和.
(2)若是项数为的对称数列,且构成首项为31,公差为的等差数列,数列前项和为,则当为何值时, 取到最大值?最大值为多少?
(3)设是项的“对称数列”,其中是首项为1,公比为2的等比数列.求前项的和 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在坐标原点的椭圆经过点,且点为其右焦点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)是否存在平行于的直线,使得直线与椭圆有公共点,且直线与的距离等于4?若存在,求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在Rt△ABC中,∠ABC=60°,∠BAC=90°,AD是BC边上的高,沿AD将△ABC折成60°的二面角B-AD-C,如图2.
(1)证明:平面ABD⊥平面BCD;
(2)设E为BC的中点,BD=2,求异面直线AE与BD所成的角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,记二次函数()与两坐标轴有三个交点,其中与x轴的交点为A,B.经过三个交点的圆记为.
(1)求圆的方程;
(2)设P为圆上一点,若直线PA,PB分别交直线于点M,N,则以MN为直径的圆是否经过线段AB上一定点?请证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com