【题目】在测试中,客观题难题的计算公式为,其中为第题的难度, 为答对该题的人数, 为参加测试的总人数.现对某校高三年级120名学生进行一次测试,共5道客观题.测试前根据对学生的了解,预估了每道题的难度,如下表所示:
测试后,从中随机抽取了10名学生,将他们编号后统计各题的作答情况,如下表所示(“√”表示答对,“×”表示答错):
(1)根据题中数据,将抽样的10名学生每道题实测的答对人数及相应的实测难度填入下表,并估计这120名学生中第5题的实测答对人数;
(2)从编号为1到5的5人中随机抽取2人,求恰好有1人答对第5题的概率;
(3)定义统计量,其中为第题的实测难度, 为第题的预估难度().规定:若,则称该次测试的难度预估合理,否则为不合理.判断本次测试的难度预估是否合理.
【答案】(1)见解析,24 (2) (3)该次测试的难度预估是合理的.
【解析】试题分析:(1)根据题中数据,统计各题答对的人数,进而根据Pi ,得到难度系数;
(2)根据古典概型概率计算公式,可得从编号为1到5的5人中随机抽取2人,求恰好有1人答对第5题的概率;(3)由计算出S值与0.05比较,可得答案.
试题解析:
(1) 每道题实测的答对人数及相应的实测难度如下表:
所以,估计120人中有人答对第5题.
(2) 记编号为的学生为(),从这5人中随机抽取2人,不同的抽取方法有10种.
其中恰好有1人答对第5题的抽取方法为,共6种.
所以,从抽样的10名学生中随机抽取2名答对至少4道题的学生,恰好有1人答对第5题的概率为.
(3)为抽样的10名学生中第题的实测难度,用作为这120名学生第题的实测难度.
因为,所以,该次测试的难度预估是合理的.
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)求f(x)的最大值;
(2)设函数,若对任意实数,当时,函数的最大值为,求a的取值范围;
(3)若数列的各项均为正数,,.求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】腾飞中学学生积极参加科技创新大赛,在市级组织的大赛中屡创佳绩.为了组织学生参加下一届市级大赛,了解学生报名参加社会科学类比赛(以下称为A类比赛)和自然科学类比赛(以下称为B类比赛)的意向,校团委随机调查了60名男生和40名女生调查结果如下:60名男生中,15名不准备参加比赛,5名准备参加A类比赛和B类比赛,剩余的男生有准备参加A类比赛,准备参加B类比赛,40名女生中,10名不准备参加比赛,25名准备参加A类比赛,5名准备参加B类比赛.
(1)根据统计数据,完成如2×2列联表(A类比赛和B类比赛都参加的学生需重复统计):
A类比赛 | B类比赛 | 总计 | |
男生 | |||
女生 | |||
总计 |
(2)能否有99%的把握认为学生参加A类比赛或B类比赛与性别有关?
附:K2.
P(K2≥k) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】健身馆某项目收费标准为每次60元,现推出会员优惠活动:具体收费标准如下:
消费次数 | 第1次 | 第2次 | 第3次 | 不少于4次 |
收费比例 | 0.95 | 0.90 | 0.85 | 0.80 |
现随机抽取了100位会员统计它们的消费次数,得到数据如下:
消费次数 | 1次 | 2次 | 3次 | 不少于4次 |
频数 | 60 | 25 | 10 | 5 |
假设该项目的成本为每次30元,根据给出的数据回答下列问题:
(1)估计1位会员至少消费两次的概率
(2)某会员消费4次,求这4次消费获得的平均利润;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年,在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵(qian du);阳马指底面为矩形,一侧棱垂直于底面的四棱锥,鳖膈(bie nao)指四个面均为直角三角形的四面体.如图在堑堵中,.
(1)求证:四棱锥为阳马;
(2)若,当鳖膈体积最大时,求锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数据的收集和整理在当今社会起到了举足轻重的作用,它用统计的方法来帮助人们分析以往的行为习惯,进而指导人们接下来的行动.
某支足球队的主教练打算从预备球员甲、乙两人中选一人为正式球员,他收集到了甲、乙两名球员近期5场比赛的传球成功次数,如下表:
场次 | 第一场 | 第二场 | 第三场 | 第四场 | 第五场 |
甲 | 28 | 33 | 36 | 38 | 45 |
乙 | 39 | 31 | 43 | 39 | 33 |
(1)根据这两名球员近期5场比赛的传球成功次数,完成茎叶图(茎表示十位,叶表示个位);分别在平面直角坐标系中画出两名球员的传球成功次数的散点图;
(2)求出甲、乙两名球员近期5场比赛的传球成功次数的平均值和方差;
(3)主教练根据球员每场比赛的传球成功次数分析出球员在场上的积极程度和技术水平,同时根据多场比赛的数据也可以分析出球员的状态和潜力.你认为主教练应选哪位球员?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com