精英家教网 > 高中数学 > 题目详情
已知函数f(x)=,g(x)=alnx,a∈R。
(1)若曲线y=f(x)与曲线y=g(x)相交,且在交点处有共同的切线,求a的值和该切线方程;
(2)设函数h(x)=f(x)-g(x),当h(x)存在最小值时,求其最小值φ(a)的解析式;
(3)对(2)中的φ(a)和任意的a>0,b>0,证明:
解:(1)
由已知得
解得,x=e2
∴两条曲线交点的坐标为(e2,e)
切线的斜率为
∴切线的方程为
(2)由条件知

(i)当a>0时,令h'(x)=0,解得x=4a2
∴当0<x<4a2时,h'(x)<0,h(x)在(0,4a2)上递减
当x>4a2时,h'(x)>0,h(x)在(4a2,+∞)上递增
∴x=4a2是h(x)在(0,+∞)上的唯一极值点,且是极小值点,从而也是h(x)的最小值点
∴最小值φ(a)= h(4a2)=2a-aln4a2=2a(1-ln2a)。
(ii)当a≤0时,
h(x)在(0,+∞)上递增,无最小值。
故h(x)的最小值φ(a)的解析式为φ(a)= 2a(1-ln2a)(a >0)。
(3)由(2)知φ'(a)=-21n2a,对任意的a>0,b>0



故由①②③得
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案