精英家教网 > 高中数学 > 题目详情

【题目】已知函数的定义域为.

1)若是单调函数,且有零点,求实数a的取值范围;

2)若,求的值域;

3)若恒成立,求实数a的取值范围.

【答案】(1);(2);(3)

【解析】

1)根据二次函数对称轴与区间的位置关系,以及零点存在性定理,求得的取值范围.

2)当时,利用的单调性,求得的值域.

3)将对称轴分成在区间内和外两种情况,结合函数的最值进行分类讨论,由此求得实数的取值范围.

1)因为是单调函数,所以,得.

因为是单调函数,且有且只有一个零点,所以

,得.因此实数a的取值范围为.

2)当时,单调递减,在单调递增,

所以,因此的值域为.

3)因为二次函数单调递减,在单调递增,

的定义域为,所以等价于

.解得.

因此实数a的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】

讨论的单调区间;

时,上的最小值为,求上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元。

1)当每辆车的月租金定为3600元时,能租出多少辆车?

2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的奇函数y=f(x)满足f(3)=0,且当x>0时,不等式f(x)>﹣xf′(x)恒成立,则函数g(x)=xf(x)+lg|x+1|的零点的个数为_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)为二次函数,且f(x+1)+f(x﹣1)=2x2﹣4x,

(1)求f(x)的解析式;

(2)设g(x)=f(2x)﹣m2x+1,其中x[0,1],m为常数且mR,求函数g(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】日照一中为了落实阳光运动一小时活动,计划在一块直角三角形ABC的空地上修建一个占地面积为S的矩形AMPN健身场地.如图,点MAC上,点NAB上,且P点在斜边BC上,已知∠ACB=60°|AC|=30米,|AM|=x米,x[10,20].

(1)试用x表示S,并求S的取值范围;

(2)若在矩形AMPN以外(阴影部分)铺上草坪.已知:矩形AMPN健身场地每平方米的造价为,草坪的每平方米的造价为(k为正常数).设总造价T关于S的函数为T=f(S),试问:如何选取|AM|的长,才能使总造价T最低.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题14分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨)标准煤的几组对照数据:


3

4

5

6


2.5

3

4

4.5

1)请画出上表数据的散点图;并指出xy 是否线性相关;

2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

3)已知该厂技术改造前100吨甲产品能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?

(参考:用最小二乘法求线性回归方程系数公式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】费马点是指三角形内到三角形三个顶点距离之和最小的点。当三角形三个内角均小于时,费马点与三个顶点连线正好三等分费马点所在的周角,即该点所对的三角形三边的张角相等均为。根据以上性质,函数的最小值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1(α为参数),以O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2-4ρcosθ-3=0,直线l的极坐标方程为θ=(ρ∈R).

(Ⅰ)求曲线C1的极坐标方程与直线l的直角坐标方程;

(Ⅱ)若直线l与曲线C1,C2在第一象限分别交于A,B两点,P为曲线C1上的动点,求△PAB面积的最大值.

查看答案和解析>>

同步练习册答案