精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以为极点, 轴的正半轴为极轴建立极坐标系,曲线的参数方程为为参数, ),直线的极坐标方程为.

(1)写出曲线的普通方程和直线的直角坐标方程;

(2)为曲线上任意一点, 为直线任意一点,求的最小值.

【答案】(1) ;(2).

【解析】试题分析:(1)曲线消去可得普通方程,注意参数的范围,利用极直互化可得直线的直角坐标方程;

(2)圆上的点到直线的距离可以转化为圆心到直线的距离求解.

试题解析:

(1)曲线的参数方程为,( 为参数, ),

消去参数,可得

由于,∴

故曲线的轨迹方程是上半圆.

∵直线,即,即

故直线的直角坐标方程为.

(2)由题意可得点在直线上,点在半圆上,半圆的圆心到直线的距离等于,即的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某年级举办团知识竞赛.四个班报名人数如下:

班别

人数

45

60

30

15

年级在报名的同学中按分层抽样的方式抽取10名同学参加竞赛,每位参加竞赛的同学从10个关于团知识的题目中随机抽取4个作答,全部答对的同学获得一份奖品.

(Ⅰ)求各班参加竞赛的人数;

(Ⅱ)若班每位参加竞赛的同学对每个题目答对的概率均为,求班恰好有2位同学获得奖品的概率;

(Ⅲ)若这10个题目,小张同学只有2个答不对,记小张答对的题目数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两个粮库要向A,B两镇运送大米,已知甲库可调出100 t大米,乙库可调出80 t大米,A镇需70 t大米,B镇需110 t大米.两库到两镇的路程和运费如下表:

这两个粮库各运往A,B两镇多少t大米,才能使总运费最省?此时总运费是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是首项为a1= ,公比q= 的等比数列,设bn+2=3 an(n∈N*),数列{cn}满足cn=anbn
(1)求证:{bn}是等差数列;
(2)求数列{cn}的前n项和Sn
(3)若cn +m﹣1对一切正整数n恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了丰富退休生活,老王坚持每天健步走,并用计步器记录每天健步走的步数.他从某月中随机抽取20天的健步走步数(老王每天健步走的步数都在之间,单位:千步),绘制出频率分布直方图(不完整)如图所示.

(1)完成频率分布直方图,并估计该月老王每天健步走的平均步数(每组数据可用区间中点值代替;

(2)某健康组织对健步走步数的评价标准如下表:

每天步数分组(千步)

评价级别

及格

良好

优秀

现从这20天中评价级别是“及格”或“良好”的天数里随机抽取2天,求这2天的健步走结果属于同一评价级别的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】电视台播放甲乙两套连续剧每次播放连续剧时需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:

连续剧播放时长(分钟)

广告播放时长分钟

收视人次

70

5

60

60

5

25

已知电视台每周安排的甲乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用表示每周计划播出的甲乙两套连续剧的次数

(1)列出满足题目条件的数学关系式并画出相应的平面区域

2问电视台每周播出甲乙两套连续剧各多少次才能使收视人次最多

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假定小麦基本苗数x与成熟期有效穗y之间存在相关关系,今测得5组数据如下:

x

15.0

25.58

30.0

36.6

44.4

y

39.4

42.9

42.9

43.1

49.2

(1)x为解释变量,y为预报变量,作出散点图;

(2)yx之间的线性回归方程,对于基本苗数56.7预报其有效穗;

(3)计算各组残差,并计算残差平方和;

(4)R2,并说明残差变量对有效穗的影响占百分之几.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Cy24x的焦点为F过点F的直线lC相交于AB两点|AB|8求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线m、n与平面α、β,下列命题正确的是(
A.m⊥α,n∥β且α⊥β,则m⊥n
B.m⊥α,n⊥β且α⊥β,则m⊥n
C.α∩β=m,n⊥m且α⊥β,则n⊥α
D.m∥α,n∥β且α∥β,则m∥n

查看答案和解析>>

同步练习册答案