【题目】在二项式( + )n展开式中,前三项的系数成等差数列. 求:(1)展开式中各项系数和;
【答案】解:由题意得2 × =1+ × ,
化为:n2﹣9n+8=0,解得n=1(舍去)或8.
∴n=8.
在 中,令x=1,可得展开式中各项系数和= = .
(1)展开式中系数最大的项.
科目:高中数学 来源: 题型:
【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程 = x+ ;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据第2题求出的回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果对定义在R上的函数f(x)对任意两个不相等的实数x1 , x2 , 都有(x1﹣x2)[f(x1)﹣f(x2)]>0,则称函数f(x)为“H函数”.给出下列函数①y=﹣x3+x+1;②y=3x﹣2(sinx﹣cosx);③y=ex+1;④ .其中“H函数”的个数为( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界.
()判断函数, 是否是有界函数,请写出详细判断过程.
()试证明:设, ,若, 在上分别以, 为上界,求证:函数在上以为上界.
()若函数在上是以为上界的有界函数,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别为CD和PC的中点.
求证:(1) BE∥平面PAD;
(2) 平面BEF⊥平面PCD.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= +alnx﹣2,曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+3垂直.
(1)求实数a的值;
(2)记g(x)=f(x)+x﹣b(b∈R),若函数g(x)在区间[e﹣1 , e]上有两个零点,求实数b的取值范围;
(3)若不等式πf(x)>( )1+x﹣lnx在|t|≤2时恒成立,求实数x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an},{bn}满足a1=2,b1=4,且 2bn=an+an+1 , an+12=bnbn+1 .
(Ⅰ)求 a 2 , a3 , a4及b2 , b3 , b4;
(Ⅱ)猜想{an},{bn}的通项公式,并证明你的结论;
(Ⅲ)证明:对所有的 n∈N* , … < < sin .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆M过点A(1,3),B(4,2),且圆心在直线y=x﹣3上.
(Ⅰ)求圆M的方程;
(Ⅱ)若过点(﹣4,1)的直线l与圆M相切,求直线l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com