精英家教网 > 高中数学 > 题目详情

【题目】在二项式( + n展开式中,前三项的系数成等差数列. 求:(1)展开式中各项系数和;
【答案】解:由题意得2 × =1+ ×
化为:n2﹣9n+8=0,解得n=1(舍去)或8.
∴n=8.
中,令x=1,可得展开式中各项系数和= =
(1)展开式中系数最大的项.

【答案】
(1)解: 设 展 开 式 中 第 r+1 项 系 数 最 大,

则 Tr+1= =

,解得 2≤r≤3.

因 此 r=2 或 3,即 展 开 式 中 第 3 项 和 第 4 项 系 数 最 大,且 T3= =7

T4= =7

∴展开式中系数最大的项分别为:7 ,7


【解析】(Ⅰ) 由 题 意 得 2 × =1+ × ,化为:n2﹣9n+8=0,解得n=8.在 中,令x=1,可得展开式中各项系数和.(Ⅱ) 设 展 开 式 中 第 r+1 项 系 数 最 大,Tr+1= = ,则 ,解得r即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.

x

3

4

5

6

y

2.5

3

4

4.5

(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程 = x+
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据第2题求出的回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果对定义在R上的函数f(x)对任意两个不相等的实数x1 , x2 , 都有(x1﹣x2)[f(x1)﹣f(x2)]>0,则称函数f(x)为“H函数”.给出下列函数①y=﹣x3+x+1;②y=3x﹣2(sinx﹣cosx);③y=ex+1;④ .其中“H函数”的个数为(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数,如果满足:对任意,存在常数,都有成立,则称上的有界函数,其中称为函数的上界.

)判断函数 是否是有界函数,请写出详细判断过程.

)试证明:设 ,若 上分别以 为上界,求证:函数上以为上界.

)若函数上是以为上界的有界函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P ABCD中,ABCDABADCD2AB,平面PAD⊥底面ABCDPAADEF分别为CDPC的中点.

求证:(1) BE∥平面PAD

(2) 平面BEF⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为2的正方体中.

(1)求几何体的表面积;

(2)若分别是棱的中点,求证: 平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= +alnx﹣2,曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+3垂直.
(1)求实数a的值;
(2)记g(x)=f(x)+x﹣b(b∈R),若函数g(x)在区间[e﹣1 , e]上有两个零点,求实数b的取值范围;
(3)若不等式πf(x)>( 1+x﹣lnx在|t|≤2时恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an},{bn}满足a1=2,b1=4,且 2bn=an+an+1 , an+12=bnbn+1
(Ⅰ)求 a 2 , a3 , a4及b2 , b3 , b4
(Ⅱ)猜想{an},{bn}的通项公式,并证明你的结论;
(Ⅲ)证明:对所有的 n∈N* sin

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M过点A(1,3),B(4,2),且圆心在直线y=x﹣3上.
(Ⅰ)求圆M的方程;
(Ⅱ)若过点(﹣4,1)的直线l与圆M相切,求直线l的方程.

查看答案和解析>>

同步练习册答案