精英家教网 > 高中数学 > 题目详情

【题目】已知函数对任意,都有.

(1)若函数的顶点坐标为,求的解析式;

(2)函数的最小值记为,求函数上的值域.

【答案】(1)(2)详见解析

【解析】

(1)由可得到的对称轴是,由,可得到,结合顶点的坐标可知,即可求出的解析式;(2)由的对称轴是,且,可知,可得到,然后讨论对称轴与所给区间的关系,可判断函数的单调性,即可得到的值域。

解:(1)∵,∴

∵函数对任意,都有

的对称轴是

又∵函数的顶点坐标为,∴,解得.

因此函数的解析式为:.

(2)由(1)知的对称轴时,且.

.

对称轴为

时,是递减的,∴的值域是

时,上是递增的,在上是递减的,

的值域是

的值域是

时,上是递增的,∴的值域是

综上,当的值域是;当的值域是

的值域是;当的值域是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(a、b∈R,a、b为常数),且y=f(x)在x=1处切线方程为y=x﹣1.
(1)求a,b的值;
(2)设h(x)= , k(x)=2h′(x)x2 , 求证:当x>0时,k(x)<+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥S ABCD中,平面SAD⊥平面ABCD.四边形ABCD为正方形,

(1)求证:CD⊥平面SAD.

(2)若SA=SD,点M为BC的中点,在棱SC上是否存在点N,使得平面DMN⊥平面ABCD?若存在,请说明其位置,并加以证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种树苗栽种时高度为A(A为常数)米,栽种n年后的高度记为f(n).经研究发现f(n)近似地满足 f(n),其中ab为常数,n∈Nf(0)A.已知栽种3年后该树木的高度为栽种时高度的3倍.

1)栽种多少年后,该树木的高度是栽种时高度的8倍;

2)该树木在栽种后哪一年的增长高度最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在平面直角坐标系中,第一象限内有定点和射线,已知的倾斜角分别为 轴上的动点共线.

(1)求点坐标(用表示);

(2)求面积关于的表达式

(3)求面积的最小时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市A,B两所中学的学生组队参加辩论赛,A中学推荐3名男生,2名女生,B中学推荐了3名男生,4名女生,两校推荐的学生一起参加集训,由于集训后队员的水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队

1求A中学至少有1名学生入选代表队的概率.

2某场比赛前从代表队的6名队员中随机抽取4人参赛,设X表示参赛的男生人数,求X得分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的极坐标方程为ρ=4cosθ,以极点为原点,极轴为x轴正半轴建立平面直角坐标系,设直线l的参数方程为(t为参数).
(1)求曲线C的直角坐标方程与直线l的普通方程;
(2)设曲线C与直线l相交于P、Q两点,以PQ为一条边作曲线C的内接矩形,求该矩形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设抛物线C1:y2=4mx(m>0)的准线与x轴交于F1 , 焦点为F2;以F1 , F2为焦点,离心率e=的椭圆C2与抛物线C1在x轴上方的交点为P,延长PF2交抛物线于点Q,M是抛物线C1上一动点,且M在P与Q之间运动.
当m=1时,求椭圆C2的方程;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,,第五组,右图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )

A. 6 B. 8 C. 12 D. 18

查看答案和解析>>

同步练习册答案